Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.3, 281-286, May, 2003
수용액에서 r형 알루미나 표면에 대한 니켈이온(II)의 흡착특성
Adsorption Characteristics of Ni Ion(II) on γ-Type Alumina Surface in Aqueous Solutions
E-mail:
초록
r형 알루미나의 흡착특성을 구명하기 위하여 본 실험에서는 수용액에서 r형 알루미나를 흡착제로 이용하여 온도와 pH가 니켈이온(II)의 흡착능에 미치는 영향을 관찰하고 알루미나 표면과 니켈이온(II) 간의 Langmuir와 Freundlich 흡착등온식과 Lagergren 흡착속도식을 결정했다. 5 g Al2O3/L의 조건에서 니켈이온은 10 h에 흡착평형상태에 도달했다. pH 2 ~ 6의 범위에서 pH가 증가할 때 흡착량은 급격히 증가하다가 pH 6에서 최대 흡착량을 나타냈으며 pH 6 ~ 9의 범위에서는 pH가 증가하여도 흡착량은 일정했다. 온도 20 ℃에서는 흡착량이 적었으나 30 ℃에서 급격히 흡착량이 증가하였으며 30 ~ 50 ℃의 범위에서는 온도 증가에 따라 흡착량이 완만하게 증가했다. Freundlich 흡착등온식의 결정계수는 0.9489로 Langmuir식의 0.9268보다 높았으며 Lagergen 흡착속도식에서의 Kad값은 0.0023 h-1으로 결정계수는 0.9497이였다.
In this paper, Langmuir and Freundlich adsorption isotherms, and Lagergen adsorption rate were determined, and the effect of temperature and pH on the adsorptivity of Ni(II) ions were investigated in order to study the adsorption characteristics of γ-type alumina. For 5 g Al2O3/L, the adsorption equilibrium was obtained in 10 h. The adsorption amount increased rapidly when pH increased from 2 to 6, and the maximum adsorption amount was observed at pH 6. For pH 6 to 9, however, the adsorption amount remained constant. The adsorption amount was low at 20 ℃. However, The adsorption amount increased with increase in temperature; the amount increased rapidly at 30 ℃ and increased linearly with temperature from 30 to 50 ℃. The correlation coefficient (R2) for Freundlich adsorption isotherm was 0.9489%, and this was higher than that for Langmuir adsorption isotherm of 0.9268%. The adsorption coefficient (Kad) of Lagergen qeuation was 0.0023 h-1, and the correlation coefficient (R2) was 0.9497.
- Hong SC, Kim MS, Chung JG, HWAHAK KONGHAK, 40(1), 22 (2002)
- Kadirvelu K, Thamaraiselvi K, Namasivayam C, Sep. Purif. Technol., 24, 497 (2001)
- Lee YJ, Kim MS, Lee SC, Kim JK, Chung JG, HWAHAK KONGHAK, 39(2), 190 (2001)
- Ricordel S, Taha S, Cisse I, Dorange G, Sep. Purif. Technol., 24, 389 (2001)
- Hong SC, Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 13(2), 138 (2002)
- Artola A, Martin M, Balaguer MD, Rigola M, J. Colloid Interface Sci., 232(1), 64 (2000)
- Park YJ, Suh MY, Park KK, Choi KS, Jee KY, Kim WH, Anal. Sci. Tech., 13, 433 (2000)
- Kosmulski M, J. Colloid Interface Sci., 192(1), 215 (1997)
- Kim MS, Chung JG, J. Colloid Interface Sci., 233(1), 31 (2001)
- Kingery KD, Bowen HK, Uhlmann DR, Introduction to Ceramics, 81, John Wiley & Sons, New York (1975)
- Kingery KD, Bowen HK, Uhlmann DR, Introduction to Ceramics, 862 ~ 865, John Wiley & Sons, New York (1975)
- Hong YH, J. KSEE, 19, 1065 (1997)
- Lee YJ, Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 12(7), 744 (2001)
- El-Shafei GMS, Moussa NA, Philip CA, Colloid Int. Sci., 228, 105 (2000)
- Baumgarten E, Dick P, J. Colloid Interface Sci., 209(1), 16 (1999)
- Baumgarten E, Dick P, J. Colloid Interface Sci., 209(1), 20 (1999)
- Regalbuto JR, Navada A, Shadid S, Bricker ML, Chen Q, J. Catal., 184(2), 335 (1999)
- Palit D, Moulik SP, J. Colloid Interface Sci., 239(1), 20 (2001)
- Hitachi Co. Ltd., Analysis Guide for Polarized Zeeman Atomic Absorption Spectrophotometry, Hitachi Co. Ltd., 4-52, Tokyo, Japan (1987)
- Lee SC, Chung JG, HWAHAK KONGHAK, 39(1), 48 (2001)
- Boisvert JP, Persello J, Castaing JC, Cabane B, Colloids Surf. A: Physicochem. Eng. Asp., 178, 187 (2001)
- Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)
- Ramos RL, Jacome LAB, Barron JM, Rubio LF, Coronado RMG, J. Hazard. Mater., B90, 27 (2002)
- Altin O, Ozbelge HO, Dogu T, J. Colloid Interface Sci., 198(1), 130 (1998)
- Rodda DP, Johnson BB, Wells JD, J. Colloid Interface Sci., 184(2), 365 (1996)