화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.1, 48-53, February, 2001
수용액에서 루타일형 이산화티타늄에 대한 구리이온(II)의 흡착
Adsorption of Copper Ion(II) on Rutile-Type Titanium Dioxide in Aqueous Solutions
E-mail:
초록
반응기에 루타일형 이산화티타늄을 50g/l 넣고 5,000rpm으로 교반하면서 구리이온의 흡착거동을 연구했다. 산성 영역에서는 Langmuir 흡착등온식이 적합했으며 흡착량이 최대가 되는 pH 9의 염기성 영역에서는 Freundlich 흡착등온식이나 Sips 흡착등온식이 적합했다. pH가 증가할수록 흡착량도 증가했으며 등전점(pH 5-6) 이하의 pH영역에서는 급격한 흡착이 이루어졌지만 등전점 이상의 pH영역에서는 완만한 흡착이 일어났다. 흡착이 진행됨에 따라 수용액의 pH값은 낮아졌다. 루타일형 이산화티타늄이 아나타제형 이산화티타늄보다 흡착량이 많았고 아나타제형 이산화티타늄 50%와 루타일형 이산화티타늄 50%를 혼합한 경우의 흡착량이 가장 많았다.
We have studied the adsorption behavior of a copper ion using the reactor containing the titanium dioxide of 50 g/l and with the stirring of 5,000 rpm. A Langmuir adsorption isotherm was suitable in the acidic region, while Freundlich and Sips adsorption isotherms were suitable in the basic region at pH 9 where maximum adsorption had been observed. The adsorption amount increased with an increased value of pH. Adsorption took place rapidly in the pH region below the isoelectric point(pH 5-6) and more slowly above the isoelectric point. The value of pH in the solution decreased during the adsorption process proceeded. The adsorption amount on the rutile-type titanium dioxide was more than that on the anatase-type titanium dioxide. And the adsorbent manufactured with the anatase type of 50wt% and the rutile type of 50wt% was much better in adsorption performance.
  1. Axlesson B, Piscator M, Arch. Environ. Health, 12, 360 (1966)
  2. Camp RT, "Water and Its Impurities," 2(nd) ed., Reinhold, New York, N.Y (1963)
  3. Gawer O, Sukhan V, Zaporozhets O, Colloids Surf., 147, 273 (1999) 
  4. Lee SM, Jung CH, Moon JK, Oh WZ, Ryu SK, HWAHAK KONGHAK, 37(1), 34 (1999)
  5. Kim JY, Kim DS, J. KSEE, 22(3), 547 (2000)
  6. Hachiya H, Ashida M, Sasaki M, Karasuda M, Yasunaga T, J. Phys. Chem., 84, 2292 (1980) 
  7. Malati MA, McEvoy M, Harvey CR, Surf. Technol., 17, 165 (1982) 
  8. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995) 
  9. Esumi K, Ishizuki K, Otsuka H, Ono M, Ichikawa S, Yanase C, J. Colloid Interface Sci., 178(2), 549 (1996) 
  10. Kim MS, Kim SI, Lee YJ, Kim BS, U.S. Patent, 5,602,195 (1997)
  11. Fahmi A, Minot C, Surf. Sci., 304, 343 (1994) 
  12. Yang JK, Lee SM, J. KSEE, 21(12), 2235 (1999)
  13. Suda Y, Morimoto T, Nagao M, Langmuir, 3, 99 (1987) 
  14. Ashida M, Saki M, Kan H, Yasunaga T, Hachiya K, Inoue T, J. Colloid Interface Sci., 67(2), 219 (1978) 
  15. Boonstra AH, Mutsaers CAHA, J. Phys. Chem., 79(18), 1940 (1975) 
  16. Rastogi M, Dinanath C, Singh GP, Indian J. Chem., A20, 652 (1981)
  17. Hitachi Ltd.: "Analysis Guide for Polarized Zeem Atomic Absorption Spectrophotometry," Hitachi Ltd., Tokyo (1987)
  18. Kim MS, Ph.D. Dissertation, Sungkyunkwan University, Suwon, Korea (2000)
  19. Sips R, J. Chem. Phys., 16(5), 490 (1948) 
  20. Riddick TM, "Control of Colloid Stability through Zeta Potential, Vol. 1," 1(st) ed., Wynnewood, Pennsylvania (1968)
  21. Neufeld RD, M.S. Thesis, Northwestern University, Evanston, Illinois, U.S.A. (1964)
  22. Kao Corporation, "Surfactants," 1(st) ed., Kao Corporation, Tokyo (1983)
  23. Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)