Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.7, 744-749, November, 2001
수용액에서 루타일형 이산화티타늄과 α형 알루미나에 대한 납이온(II)의 흡착특성
Adsorption Characteristics of Pb(II) on Rutile-Type Titanium Dioxide and α-Type Alumina in Aqueous Solutions
E-mail:
초록
본 실험에서는 루타일형 이산화티타늄과 α형 알루미나를 이용하여 수용액으로부터 납이온을 효과적으로 제거할 수 있는 조건을 구명하기 위해 pH와 이산화티타늄과 알루미나의 혼합조성에 따른 흡착특성을 연구했다. 흡착등온식은 35 g/L의 이산화티타늄과 알루미나의 농도에서 100 h 동안 흡착평형 실험을 통해 결정했다. 이산화티타늄은 Freundlich 흡착등온식으로 나타내는 것이 신뢰도(R(2): 0.9190)가 높았지만 알루미나의 경우에는 Langmuir 흡착등온식을 사용하는 것이 신뢰도가 높았다(R(2): 0.8877). 이산화티타늄과 알루미나는 pH 2 ~ 4 범위에서 급격하게 흡착량이 증가하다가 pH 4에서 최대흡착량을 나타냈는데, 이산화티타늄은 7.7, 알루미나는 8.9 mgPb(+2)/L 였다. 이산화티타늄만 사용하는 경우에 납이온의 흡착량은 7.7 mgPb(+2)/L 이였으나 알루미나 함량이 20, 40 wt%로 증가함에 따라 흡착량도 8.1, 8.6 mgPb(+2)/L 으로 증가했다. 알루미나 함량이 50 wt%가 되면 8.9 mgPb(+2)/L가 되었으며 그 이상의 범위에서는 알루미나 함량의 증가에 관계없이 흡착량은 일정했다.
In this experiment, adsorption characteristics of lead ion (Pb(+2)) on a mixture that was composed of varying contents of TiO2 and Al2O3 in pH adjusted solutions was studied. The effective adsorption conditions in removing the lead ion were investigated on both rutile-type titanium dioxide and α-type alumina. Adsorption isotherms were obtained through adsorption-equilibrium exeriments at the concentration of 35 g/L and 100 h for both TiO2 and Al2O3. In TiO2, the reliability of Freundlich adsorption isotherm was 0.9190, and it was higher than that of Langmuir isotherm, which was 0.7035. In Al2O3, the reliability of Langmuir adsorption isotherm, 0.8877, was higher than that of Freundlich isotherm, 0.7937. The adsorption amount increased rapidly for both TiO2 and Al2O3 at pH range of 2 to 4. At pH of 4, the maximum adsorptions occurred for TiO2 and Al2O3 and they were 7.7 and 8.9 mgPb(+2)/L, respectively. The adsorption amount of Pb(II) with TiO2 alone was 7.7 mgPb(+2)/L. The adsorption amount increased to 8.1, 8.6, and 8.9 mgPb(+2)/L for the mixture with alumina contents of 20, 40, and 50 wt%, respectively. Over 50 wt% of alumina content, the adsorption amount remained constant.
- Axlesson B, Piscator M, Arch. Environ. Health, 12, 360 (1966)
- Artola A, Martin M, Balaguer MD, Rigola M, J. Colloid Interface Sci., 232(1), 64 (2000)
- Niesink RJM, Vries JD, Hollinger MA, "Toxicology Principles and Applications," CRC Press, New York, 128 (1996)
- 生活과 化學 敎材編纂 委員會. "生活과 化學," 自由아카데미, 서울, 142 (1998)
- Kim MS, Lee SC, Chung JG, J. Korean Ind. Eng. Chem., 12(1), 83 (2001)
- Barbier F, Duc G, Petit-Ramel M, Colloids Surf., 166, 153 (2000)
- Nagata N, Kubota LT, Bueno MIMS, Peralta-Zamora PG, J. Colloid Interface Sci., 200(1), 121 (1998)
- Gupta VK, Gupta M, Sharma S, Water Res., 35(5), 1125 (2001)
- Seki H, Suzuki A, J. Colloid Interface Sci., 211(2), 375 (1999)
- Kim MS, Chung JG, J. Colloid Interface Sci., 233(1), 31 (2001)
- Kim MS, Kim SI, Lee YJ, Kim BS, U.S. Patent, 5,602,195 (1997)
- Tanaka K, White JM, J. Phys. Chem., 86, 3977 (1982)
- Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 11(4), 381 (2000)
- Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)
- 日本粉體工學會, "粉體物性圖說," 日本粉體工學技術協會, 東京, 263 (1993)
- Wu MC, Moller PJ, Chem. Phys. Lett., 171(1), 136 (1990)
- Ashida M, Sasaki M, Kan H, Yasunaga T, Hachiya K, Inoue T, J. Colloid Interface Sci., 67(2), 219 (1978)
- Hayashi H, Iwasaki T, Onoder Y, Fujiki Y, Chem. Soc. Jpn., 62(11), 3716 (1989)
- Baumgarten E, Dick P, J. Colloid Interface Sci., 209(1), 16 (1999)
- Baumgarten E, Dick P, J. Colloid Interface Sci., 209(1), 20 (1999)
- El Shafei GMS, Moussa NA, Philip CA, J. Colloid Interface Sci., 228(1), 105 (2000)
- Palit D, Moulik SP, J. Colloid Interface Sci., 239(1), 20 (2001)
- Hitachi Ltd., "Analysis Guide for Polarized Zeem Atomic Absorption Spectrophotometry," 4, Tokyo (1987)
- Lee YJ, Kim MS, Lee SC, Kim JK, Chung JG, HWAHAK KONGHAK, 39(2), 190 (2001)
- Fahmi A, Minot C, Surf. Sci., 304, 343 (1994)
- Lee SC, Chung JG, HWAHAK KONGHAK, 39(1), 48 (2001)
- Dalas E, Klepetsanis PG, Koutsoukos PG, J. Colloid Interface Sci., 224(1), 56 (2000)
- Morris GE, Vincent B, Snowden MJ, J. Colloid Interface Sci., 190(1), 198 (1997)
- Lee GH, Chung TS, J. Korean Ind. Eng. Chem., 11(1), 75 (2000)
- Riddick TM, "Control of Colloid Stability through ZETA Potential," 1, 49, Livingston Publishing Company, Pennsylvania (1968)
- Nowack B, Sigg L, J. Colloid Interface Sci., 177(1), 106 (1996)
- Sharma YC, J. Colloid Interface Sci., 233(2), 265 (2001)