Applied Chemistry for Engineering, Vol.31, No.1, 36-42, February, 2020
산화 공정이 석유계 등방성 피치의 열거동 특성에 미치는 영향
Effects of Oxidation Process on Thermal Properties of Petroleum-based Isotropic Pitch
E-mail:
초록
산화 공정이 피치의 열거동 특성에 미치는 영향을 규명하기 위하여 다양한 공정 온도에서 산화된 피치를 제조하였다. 피치의 열거동 특성은 thermogravimetric analysis (TGA)를 이용하여 분석하였으며, derivative thermogravimetry (DTG) 그래프 거동 변화에 따라 A (25~100 ℃), B (250~550 ℃), C (550~800 ℃) 세 구간으로 분석하였다. A 구간에서는 피치에 함유되어 있던 수분이 제거되면서 중량 감소가 발생하였다. B 구간에서 산화에 의하여 피치의 열적 안정성이 향상되었다. 이는 산화 온도가 증가할수록 피치의 방향족화도 및 분자량이 증가하였기 때문으로 판단된다. 반면, C 구간에서는 B 구간과 반대의 결과를 보였다. C 구간에서 열적 안정성이 저해된 것은 산화 공정에 의하여 피치에 도입 된 C-OH, C-O-C, C=O 결합이 분해되고, 이에 의하여 발생한 산소 화합물이 피치의 연소 반응을 유도하였기 때문으로 사료된다.
In order to investigate the effect of the oxidation process on thermal properties of the pitch, the oxidized pitch was prepared by changing the oxidation temperature. Thermal properties of the pitch were analyzed using thermogravimetric analysis (TGA), and it divided into three sections as A (25~100 ℃), B (250~550 ℃) and C (550~800 ℃) by derivative thermogravimetry (DTG) graph behavior. In the A section, the was reduced because the moisture contained in the pitch was removed. In the B section, as the oxidation temperature increased, the thermal stability of the pitch is improved. Because the degree of aromaticity and molecular weight of the pitch increased with increasing oxidation temperature. In contrast, the results of the C section were shown opposite of B section. Because the introduced C-OH, C-O-C, and C=O bonds were decomposed, and the resulting oxygen compounds induced the combustion reaction of the pitch.
- Kim KH, Lee SM, An DH, Lee YS, Appl. Chem. Eng., 28(4), 432 (2017)
- Seo SW, Kim JH, Lee YS, Im JS, Appl. Chem. Eng., 29(6), 652 (2018)
- Kim JH, Kim HG, Trans. Korean Hydrogen New Energy Soc., 27, 612 (2016)
- Cho KY, Riu DH, Shin DG, Joo HJ, Koo HH, Park IS, J. Korean Ceram. Soc., 46, 643 (2009)
- Eom SY, Lee CH, Park KH, Ryu SK, Korean Chem. Eng. Res., 45(3), 269 (2007)
- Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30(2), 160 (2019)
- Yang JY, Ko JK, Yoon KE, Seo MK, Text. Sci. Eng., 51, 265 (2014)
- Jang JH, Han GB, Kim H, J. Korean Soc. Environ. Eng., 35, 415 (2013)
- Lee JK, In SJ, Lee DW, Rhee BS, Ryu SK, Korean Chem. Eng. Res., 28, 669 (1990)
- Lee JK, In SJ, Rhee BS, Ryu SK, Korean Chem. Eng. Res., 29, 433 (1991)
- Yang SH, Kim IJ, Jeon MJ, Moon SI, Kim HS, An KH, Lee YP, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 502 (2007)
- Han W, Choi WK, An KH, Kim HG, Kang SJ, Kim BJ, Appl. Chem. Eng., 24(4), 363 (2013)
- Jo HJ, Jung MJ, Lee HI, Lee YS, Trans. Korean Hydrogen New Energy Soc., 27, 421 (2016)
- Ko HJ, Park CU, Cho HH, Yoo MJ, Kim MS, Lim YS, Korean J. Mater. Res., 23(5), 276 (2013)
- Ko SH, Choi JE, Lee CW, Jeon YP, J. Ind. Eng. Chem., 54, 252 (2017)
- Jung DH, Lee YS, Rhee BS, Korean Chem. Eng. Res., 29, 89 (1991)
- Yang JY, Park SH, Park SJ, Seo MK, Appl. Chem. Eng., 26(4), 406 (2015)
- Kim MC, Eom SY, Ryu SK, Edie DD, Korean Chem. Eng. Res., 43(6), 745 (2005)
- Jung MJ, Ko Y, Lee YS, Appl. Chem. Eng., 26(2), 224 (2015)
- Kim DY, Kim JH, Lee HI, Lee YS, Appl. Chem. Eng., 27(5), 537 (2016)
- Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
- Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25, 78 (2018)
- Cho KY, Kim KJ, J. Korean Ceram. Soc., 40, 985 (2003)
- Lim YS, J. Korean Ceram. Soc., 34, 817 (1997)
- Fernandez JJ, Figueiras A, Granda M, Bermejo J, Menendez R, Carbon, 33, 295 (1995)
- Fernandez JJ, Figueiras A, Granda M, Bermejo J, Menendez R, Carbon, 33, 1235 (1995)
- Guan TT, Zhang GL, Zhao JH, Wang JL, Li KX, Fuel, 242, 184 (2019)
- Kim KS, Im JS, Lee JD, Kim JH, Hwang JU, Appl. Chem. Eng., 30(3), 331 (2019)
- Lee DH, Choi YH, Rhee KY, Yang KS, Kim BJ, Nanomaterials, Doi:10.3390/nano9040521.
- Lim TH, Yeo SY, Sci. Rep., Doi:10.1038/s41598-017-05192-5.
- Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A, J. Anal. Appl. Pyrolysis, 89, 143 (2010)
- Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM, Carbon, 37, 1379 (1999)