Applied Chemistry for Engineering, Vol.29, No.6, 652-656, December, 2018
석유계 잔사유(PFO)의 피치 합성 시 압력조건에 따른 피치 특성 변화
Identification of Synthesized Pitch Derived from Pyrolyzed Fuel Oil (PFO) by Pressure
E-mail:
초록
본 연구에서는 석유계 잔사유를 원료로 피치 합성반응 중 압력변수에 의한 영향을 고찰하였다. 압력변수를 달리하여 두 단으로 나누어 반응을 진행하였다. 실험은 두 단을 연속적으로 진행하였고, 첫 번째 단에 가압, 상압, 감압으로 열처리를 진행하였고, 두 번째 단은 상압과 감압으로 실험하였다. 합성 온도는 400 ℃, 합성 시간은 총 2 h으로 피치 합성을 진행하였다. 각 조건에 의해 제조된 피치의 열적 특성과 분자량 분포는 연화점 측정과 MALDI-TOF 분석을 통해 고찰하였다. 또한, GC-SIMDIS를 이용해 피치 합성 반응 중 휘발된 액상 성분에 대한 특성을 고찰하였다. 첫 번째단에서 가압 조건을 이용한 경우, 저비점 물질들이 상대적으로 다른 두 조건보다 많이 피치 합성 반응에 참여하였으며, 저비점 물질들의 반응참여 효과로 낮은 연화점을 갖는 피치를 얻을 수 있었다. 반대로 첫 번째 단에서 감압 조건을 사용한 경우, 저비점 물질들이 효과적으로 휘발되어 반응기 외부로 빠져나가 낮은 피치 수율을 얻었고, 일부 코크스화가 진행된 결과를 얻을 수 있었다. 압력 공정변수를 제어하여 피치의 수율 및 연화점 등 물성을 효과적으로 조절할 수 있는 공정변수를 도출하였다.
In this study, effects of the reaction pressure were studied for petroleum-based pitch synthesis. A two-stage reaction process was performed based on different reaction pressure conditions. Each stage experiments for the two-stage reaction were consecutively carried out. The first stage was consisted of three different pressure conditions; high (10 bar), normal and low (0.1 bar). And the second stage was carried out at the normal and low (0.1 bar) pressure. The pitch synthesis was realized at 400 ℃ for 2 h. Thermal properties and molecular weight distributions of each samples were investigated by analyzing the softening point and MALDI-TOF data. Volatilized components during the pith synthesis were measured by GC-SIMDIS. In case of the first-step reaction with the high pressure condition, the low molecular weight component participated to the pitch formation more effectively and the pitch with the low softening point was obtained. However, for the case of the first-step with the low pressure, the low molecular weight component was vent outside and the partial coke formation occurred. Eventually, pitch properties such as the softening point and yield were controlled effectively by changing the pressure in the pitch synthesis reaction.
- Kershaw JR, Black KJT, Energy Fuels, 7, 420 (1993)
- King LF, Robertson WD, Fuel, 47, 197 (1968)
- Wombles RH, Kiser MD, Essential Readings in Light Metals. Springer, 4, 246-250 (2016).
- Kim BJ, Kotegawa T, Eom Y, An J, Hong IP, Kato O, Nakabayashi K, Miyawaki J, Kim BC, Mochida I, Carbon, 99, 649 (2016)
- Charatte A, Kocaefe D, Saint-Romain JL, Couderc P, Carbon, 29, 1015 (1991)
- Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y, Carbon, 38, 305 (2000)
- Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25, 75 (2018)
- Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS, Fuel, 167, 25 (2016)
- Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
- Kim JG, Kim JH, Song BJ, Lee CW, Lee YS, Im JS, Fuel, 186, 20 (2016)
- Kim JG, Kim JH, Lee CW, Lee KB, Im JS, Carbon Lett., 23, 48 (2017)
- Santamaria-Ramirez R, Romero-Palazon E, Gomez-de-Salazar C, Rodriguez-reinoso F, Martinez-Saez S, Martinez-Esacandell M, Marsh H, Carbon, 37, 445 (1999)
- Park YD, Mochida I, Carbon, 27, 925 (1989)
- Moriyama R, Hayashi J, Suzuki K, Hiroshima T, Chiba T, Carbon, 40, 53 (2002)
- Brooks JD, Taylor GH, Carbon, 3, 185 (1965)
- Blanco C, Santamaria R, Bermejo J, Menedez R, Carbon, 38, 1169 (2000)
- Shui HF, Feng YT, Shen BX, Gao JS, Fuel Process. Technol., 55(2), 153 (1998)
- Garcia R, Crespo JL, Martin SC, Snape CE, Moinelo SR, Energy Fuels, 17(2), 291 (2003)
- Dang A, Li H, Li T, Zhao T, Xiong C, Zhuang Q, Shang Y, Chen X, Ji X, J. Anal. Appl. Pyrolysis, 119, 18 (2016)
- Mochida I, Maeda K, Takeshita K, Carbon, 15, 17 (1977)
- Legin-Kolar M, Carbon, 30, 613 (1992)
- Yang H, Luo R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528, 2929 (2011)