화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.36, 293-297, April, 2016
Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO)
E-mail:
Pitch synthesis from pyrolyzed fuel oil (PFO) was conducted to understand the empirical synthesis tendency as a function of reaction temperature. Additionally, the chemical and physical characteristics of PFO and produced pitch are identified using X-ray diffraction analysis, thermogravimetric analysis, softening point analysis, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis. The produced pitch exhibited an enhanced stacking height (LC) value and C/H ratio, which is related to the formation of graphitic structure, according to the increased reaction temperature. The carbon residue yield obtained at 900 °C showed a gradually increased value of up to 42.58% in the sample synthesized at the temperature of 410 °C, depending on the increased reaction temperature. The molecular weight distribution of the produced pitches exhibited noticeable variation during the thermal reaction via MALDI-TOF analysis. The variation of the molecular weight fraction is assumed based on the pitch synthesis mechanism, e.g., polymerization, condensation and cracking reaction.
  1. Mochida I, Korea Y, Ku CH, Watanabe F, Sakai Y, Carbon, 38, 305 (2000)
  2. Song H, Chen X, Chen X, Xhang S, Li H, Carbon, 41, 3037 (2003)
  3. Mochida I, Shimizu K, Korai Y, Sakai Y, Fujiyama S, Toshima H, Hono T, Carbon, 30, 55 (1992)
  4. Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS, Fuel, 167, 25 (2016)
  5. Chand S, J. Mater. Sci., 35(6), 1303 (2000)
  6. Subhash K, Manoj S, Carbon Lett., 16, 171 (2015)
  7. Zhu J, Park SW, Joh HI, Kim HC, Lee S, Carbon Lett., 14, 94 (2013)
  8. Ahn CJ, Park IS, Joo HJ, Carbon Lett., 11, 304 (2010)
  9. Cheng XL, Zha QF, Li XJ, Yang XJ, Fuel Process. Technol., 89(12), 1436 (2008)
  10. Moriyama R, Kumagaia H, Hayashia J, Yamaguchi C, Mondorib J, Matsui H, Chiba T, Carbon, 38, 749 (2000)
  11. Eser S, Wang GH, Energy Fuels, 21(6), 3573 (2007)
  12. Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH, Carbon, 77, 747 (2014)
  13. Mochida I, Toshima H, Korai Y, Varga T, J. Mater. Sci., 25, 3484 (1990)
  14. Li PP, Xiong JM, Ge ML, Sun JC, Zhang W, Song YY, Fuel Process. Technol., 140, 231 (2015)
  15. Kim HY, Monthly Energy Statistics, Korea Energy Economics Institute, 2015.
  16. Edwards WF, Jin L, Thies MC, Carbon, 41, 2761 (2003)
  17. Burgess WA, Thies MC, Carbon, 49, 636 (2011)
  18. Manoj B, Kunjomana Ag, Int. J. Electrochem. Sci., 7, 3127 (2012)
  19. Dumont M, Chollon G, Dourges MA, Pailler R, Bourrat X, Naslain R, Bruneel JL, Couzi M, Carbon, 40, 1475 (2002)
  20. Perez M, Granda M, Garcıa R, Santamarıa R, Romero E, Menendez R, J. Anal. Appl. Pyrolysis, 63, 223 (2002)
  21. Manocha LM, Patel M, Manocha SM, Vix-Guterl C, Ehrburger P, Carbon, 39, 663 (2001)