Polymer(Korea), Vol.42, No.1, 67-73, January, 2018
투명 폴리이미드 기판에 코팅된 PEDOT계 전도성 박막의 특성분석
Characterizations of PEDOT Based Conductive Thin Films Coated on Transparent Polyimide Substrate
E-mail:,
초록
본 연구에서는 기존의 사용되었던 glass, polyethylene terephthalate(PET) 기판과 함께 CPI®를 피착체로 활용하여 기상중합(vapor phase polymerization; VPP) 방법으로 PEDOT계 전도성 박막을 제조하여, 박막의 광·전기적 특성과 물리화학적 특성을 비교 분석하였다. CPI® 위에 성막된 PEDOT계 전도성 박막의 전기전도도와 광투과도는 glass, PET 기판을 사용한 경우와 유사하였다. 반면에, CPI®를 기판으로 활용한 경우의 전도성 박막의 물리화학적 특성은 다른 기판들에 비하여 상대적으로 우수하였다. 이는 PEDOT 박막과 CPI® 기판의 계면에서 균일한 산화제의 도포에 따른 밀착성의 향상에 기인한 것이라 판단된다. 특히, 공-증발 VPP로 PEDOT와 SiO2를 하이브리드한 전도성 박막의 물리화학적 특성은 박막 내에 Si-O-Si 가교구조의 도입으로 크게 향상되었다.
In this study, PEDOT based conductive thin films were fabricated using vapor phase polymerization (VPP) with CPI® as a substrate and compared with the conductive thin film prepared on the glass and polyethylene terephthalate (PET) substrate. The conductivity and optical transparency of PEDOT based conductive thin films fabricated on CPI® were similar to those of the conductive thin films on glass and PET. Physicochemical properties of conductive films on CPI® were superior to those of the conductive thin films on glass and PET. It might be due to the improvement of adhesion property from uniformly coated oxidant at the interface between PEDOT and CPI®. Especially, physicochemical characteristics of PEDOT-SiO2 hybrid conductive film that prepared by co-vaporization VPP were drastically enhanced because of introducing Si-O-Si crosslink network structure. The electromechanical stability of conducting layer in electronic device is important in the terms of reliability.
- Yang CP, Chen WT, Macromolecules, 26, 4865 (1993)
- Chang JH, Park KM, Lee SM, Oh JB, J. Polym. Sci. B: Polym. Phys., 38(19), 2537 (2000)
- Fang X, Yang ZW, Gao L, Li Q, Ding M, Polymer, 44, 2614 (2003)
- Saeed MB, Zhan MS, Eur. Polym. J., 42, 1844 (2006)
- Yang F, Li JZY, Zhang S, Shao Y, Shao H, Ma T, Gong C, Eur. Polym. J., 45, 2053 (2009)
- He JH, Horie K, Yokota R, He FF, Polymer, 42(9), 4063 (2001)
- Sazanov YN, Russian J. Appl. Chem., 74, 1253 (2001)
- Maier G, Prog. Polym. Sci, 26, 3 (2001)
- Yang CP, Hsiao FZ, J. Polym. Sci. A: Polym. Chem., 42(9), 2272 (2004)
- Liu JG, Zhao XJ, Fan HSL, Yang SY, High Perform. Polym., 18, 851 (2006)
- Jin HS, Chang JH, Kim JC, Macromol. Res., 16(6), 503 (2008)
- Park JS, Chang JH, Polym. Korea, 32(6), 580 (2008)
- Min U, Chang JH, Polym. Korea, 34(6), 495 (2010)
- Ching CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
- Aasmundtveit KE, Samuelsen EJ, Pettersson LAA, Inganas O, Johansson T, Feidenhan’l R, Synth. Met., 101, 561 (1999)
- Han YH, Travas-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
- Yim JH, Compos. Sci. Technol., 86, 45 (2013)
- Ko YS, Han YH, Yim JH, Polym. Korea, 38(4), 525 (2014)
- Khadka R, Yim JH, Macromol. Res., 23(6), 559 (2015)
- Ha YH, Nikolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R, Adv. Funct. Mater., 14(6), 615 (2004)
- Choi JS, Cho KY, Yim JH, Eur. Polym. J., 46, 389 (2010)
- Ko YS, Yim JH, Polymer, 93, 167 (2016)