화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 59-66, January, 2018
안정화 조건에 따른 석탄계 피치 탄소섬유의 물성
Properties of Coal-Tar Pitch Based Carbon Fiber with Different Stabilization Conditions
E-mail:
초록
피치계 탄소섬유의 제조공정은 방사, 안정화 및 탄화로 나뉘고, 그 중 안정화 공정은 긴 처리시간과 많은 비용을 필요로 한다. 안정화 공정의 최적조건을 결정하기 위하여 안정화가 진행된 정도를 나타내는 SI(stabilization index)를 도입하여 계산하였고, 안정화 조건에 따른 탄화섬유의 물성 변화를 조사하였다. 안정화 시간 0 및 1시간에서, 안정화 온도를 연화점+0~50 °C로 변화시키면서 안정화섬유 및 탄화섬유의 특성을 분석하였다. 탄화섬유의 기계적 물성 및 전기전도도 특성에 의해 안정화 유지시간 0시간에서 안정화 온도 SP+30 °C를, 안정화 유지시간 1시간에서 안정화 온도 SP+10 °C를 최적의 안정화 조건으로 결정하였다. 두 조건에서 안정화 정도에 따라 증가되는 안정화 섬유의 산소의 함량은 약 7.2%이었다.
The manufacturing process of pitch-based carbon fiber was divided into spinning, stabilization and carbonization. Among them, the stabilization process requires long time and high cost. In order to determine the optimal stabilization conditions, we calculated the stabilization index (SI), which means the degree of stabilization, and investigated the correlation between SI and physical properties of carbonized fibers with changing the stabilization conditions. With the stabilization times of 0 h and 1 h, the stabilization temperatures were changed from SP+0 °C to SP+50 °C, and the resulting stabilized and carbonized fibers were characterized. For tensile properties and electrical conductivity, a stabilization temperature of SP+30 °C with 0 h duration and a stabilization temperature of SP+10 °C with 1 h duration were determined as the optimal stabilization conditions. At these conditions, the oxygen contents of stabilized fibers, which increased according to the degree of stabilization, were around 7.2%.
  1. Kim MC, Eom SY, Ryu SK, Edie DD, Korean J. Chem. Eng., 43, 745 (2005)
  2. Seo MK, Park SJ, Polym. Sci. Technol., 21, 130 (2010)
  3. Huang X, Materials, 2, 2369 (2009)
  4. Kim BJ, Eom YE, Kato O, Jin M, Kim BC, Mochida I, Yoon SH, Carbon, 77, 747 (2014)
  5. Zhanh J, Brazis P, Gamota D, Kalanasundaram K, Scheifers S, Wielgus J, Chowdhuri AR, PCT/US020650 (2003).
  6. Hwang JS, Lee CH, Cho HK, Kim MS, Kim CJ, Ryu SK, Korean J. Chem. Eng. Res., 33, 551 (1995)
  7. Kim MS, Kim SY, Hwang JS, J. Korean Oil Chem. Soc., 14(1), 77 (1997)
  8. Kumar H, Int. J. Eng. Sci. Invention, 3, 23 (2014)
  9. Zhu J, Park SW, Joh HI, Kim HC, Lee S, Macromol. Res., 23(1), 79 (2015)
  10. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PZ, Mater. Lett., 61, 2292 (2007)
  11. Park MS, Jung MJ, Lee YS, J. Ind. Eng. Chem., 37, 277 (2016)
  12. Shin HK, Park M, Kang PH, Choi HS, Park SJ, J. Ind. Eng. Chem., 20(5), 3789 (2014)
  13. Manoj B, Kunjumana AG, Int. J. Electrochem. Sci., 7, 3127 (2012)
  14. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z, Carbon, 45, 1686 (2007)
  15. Fujimoto H, Carbon, 41, 1585 (2003)
  16. Sonibare OO, Haeger T, Foley SF, Energy, 35(12), 5347 (2010)
  17. Lu C, Xu S, Gan Y, Liu S, Liu C, Carbon, 43, 2295 (2005)
  18. Choi PR, Kim SG, Jung JC, Kim MS, Carbon Lett., 22, 70 (2017)
  19. Jang SY, Ko S, Jeon YP, Choi J, Kang N, Kim HC, Joh HI, Lee S, J. Ind. Eng. Chem., 45, 316 (2017)