화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 74-79, January, 2018
에틸렌옥사이드기를 포함하는 폴리스티렌 유도체의 합성과 이온전도특성
Synthesis of Polystyrene Derivatives Containing Ethylene Oxide Unit and Their Ionic Conductivities
E-mail:
초록
본 연구에서는 에틸렌옥사이드기를 가지는 스티렌 유도체(PEGMS)를 마크로모노머로 합성하였으며, 라디칼 중합을 통하여 단량체 단위당 곁사슬이 정량적으로 도입된 그래프트 공중합체를 제조하였다. 고분자전해질에 대한 전기화학 측정결과, 마크로모노머의 분자량이 클수록 높은 이온전도도가 나타났다. 또한 같은 PEGMS의 분자량에서도 이온전도도는 리튬염의 농도에 따라 변화하였다. 특히 [EO]:[Li] 비율 30:1에서 기질이 결정성에서 무정형으로 전환되었으며 최대 5.11×10-5 S/cm의 이온전도도가 관찰되었다. 하지만, 더 높은 리튬이온 농도는 기질의 유리전이 온도를 증가시켰고, 반대로 더 낮은 리튬이온 농도는 기질의 결정성을 억제하지 못하였다. 따라서 높은 이온전도도를 확보하기 위해서 첨가되는 리튬염의 양은 기질의 결정성을 억제하는 수준으로 조절해야 한다.
In this study, styrene derivative having ethylene oxide group (PEGMS) was synthesized as a macromonomer, and graft copolymer in which side chains were quantitatively introduced into each monomer unit was prepared by radical polymerization. From the electrochemical measurement of polymer electrolytes, it was found that the higher the molecular weight of macromonomer, the higher the ionic conductivity. Also, the ionic conductivity of the same PEGMS varied with the concentration of lithium salt. In particular, the polymer substrate was converted from crystalline to amorphous at [EO]:[Li] ratio of 30:1 and ion conductivity of up to 5.11 × 10-5 S/cm was observed. However, the higher lithium ion concentration increased the glass transition temperature of the substrate, while the lower lithium ion concentration did not suppress the crystallinity of the substrate. Therefore, the amount of lithium salt for a high ionic conductivity should be adjusted to a level that inhibits the crystallinity of the polymer substrate.
  1. Li Z, Huang J, Liaw BY, Metzler V, Zhang JB, J. Power Sources, 254, 168 (2014)
  2. Tarascon J, Armand M, Nature, 414, 359 (2001)
  3. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J, Nano Energy, 33, 363 (2017)
  4. Sakuda A, Hayashi A, Tatsumisago M, J. Power Sources, 195(2), 599 (2010)
  5. Higa M, Yaguchi K, Kitani R, Electrochim. Acta, 55(4), 1380 (2010)
  6. Porcarelli L, Aboudzadeh MA, Rubatat L, Nair JR, Shaplov AS, Gerbaldi C, Mecerreyes D, J. Power Sources, 364, 191 (2017)
  7. Gomari S, Esfandeh M, Ghasemi I, Solid State Ion., 303, 37 (2017)
  8. Pozyczka K, Marzantowicz M, Dygas JR, Krok F, Electrochim. Acta, 227, 127 (2017)
  9. Wong S, Vaia R, Giannelis E, Zax D, Solid State Ion., 86, 547 (1996)
  10. Kim YW, Lee W, Choi BK, Electrochim. Acta, 45(8-9), 1473 (2000)
  11. Lee YS, Song GS, Kang Y, Suh DH, Electrochim. Acta, 50(2-3), 311 (2004)
  12. Croce F, Appetecchi G, Persi L, Scrosati B, Nature, 394, 456 (1998)
  13. Meyer WH, Adv. Mater., 10(6), 439 (1998)
  14. Celik SU, Bozkurt A, Solid State Ion., 181(21-22), 987 (2010)
  15. Nishimoto A, Watanabe M, Ikeda Y, Kohjiya S, Electrochim. Acta, 43(10-11), 1177 (1998)
  16. Ikeda Y, Wada Y, Matoba Y, Murakami S, Kohjiya S, Electrochim. Acta, 45(8-9), 1167 (2000)
  17. Jannasch P, Polymer, 42(21), 8629 (2001)
  18. Hsieh H, Quirk R, Anionic Polymerization, Principle and Practical Applications, Marcel Dekker, Inc., New York, 1996.
  19. Higa M, Fujino Y, Koumoto T, Kitani R, Egashira S, Electrochim. Acta, 50(19), 3832 (2005)
  20. Choi DI, Ryu SW, Polym. Korea, 39(4), 621 (2015)
  21. Feast WJ, Gibson VC, Johnson AF, Khosravi E, Mohsin MA, Polymer, 35(16), 3542 (1994)
  22. Pennarun PY, Jannasch P, Papaefthimiou S, Skarpentzos N, Yianoulis P, Thin Solid Films, 514(1-2), 258 (2006)
  23. Bruce P, Elsevier Applied Science, New York, p 237 (1987).
  24. Kalaignan GP, Kang MS, Kang YS, Solid State Ion., 177(11-12), 1091 (2006)