Korean Journal of Chemical Engineering, Vol.34, No.6, 1619-1629, June, 2017
Technology development for the reduction of NOx in flue gas from a burner-type vaporizer and its application
E-mail:,
We developed a modified process of a submerged combustion vaporizer (SMV) to remove nitric oxides (NOx) efficiently from flue gas of the SMV at liquefied natural gas (LNG) terminals. For this, excess oxygen is injected into exhaust gas that contains NOx from SMV burner. Then, the mixed gas spreads into a hydrogen peroxide solution or water bath. We initially performed experiments of the modified system to estimate the effect of various process variables (temperature, excess O2 concentration, pH of water, residence time of flue gas in water tank, and H2O2 concentration) on NOx conversion, and developed a mathematical model of the system based on the experiment results. Lastly, we confirmed higher performance of the modified system and validated the feasibility for its field application.
- NIER, National Air Pollutants Emission 2012, 11-1480523-002293- 01, Ministry of Environment, Korea (2012).
- Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y, Korean J. Chem. Eng., 33(11), 3102 (2016)
- Egashira S, Kobelco Technol. Rev., 32, 64 (2013)
- Lee K, Appl. Chem. Eng., 21(3), 243 (2010)
- Morrison ME, Rinker RE, Corcoran WH, Ind. Eng. Chem. Fundam., 5, 175 (1966)
- Tsukahara H, Ishida T, Mayumi M, Nitric Oxide, 3, 191 (1999)
- Bodenstein M, Wachenheim L, Z. Elektrochem., 24, 183 (1918)
- Tipper CFH, Williams RK, Trans. Faraday Soc., 57, 79 (1961)
- Treacy JC, Daniels F, J. Am. Chem. Soc., 77, 2033 (1955)
- Mahenc J, Clot G, Bes R, Bull. Soc. Chim. Fr., 5, 1578 (1971)
- Hisatsune IC, Zafonte L, J. Phys. Chem., 73, 2980 (1969)
- Olbregts J, Int. J. Chem. Kinet., 17, 835 (1985)
- Smith JH, J. Am. Chem. Soc., 65, 74 (1943)
- Cueto R, Pryor WA, Vib. Spectrosc., 7, 97 (1994)
- Brown FB, Crist RH, J. Chem. Phys., 9, 840 (1941)
- Greig JD, Hall PG, Trans. Faraday. Soc., 63, 655 (1967)
- Greig JD, Hall PG, Trans. Faraday. Soc., 62, 652 (1966)
- Aida A, Miyamoto K, Saito S, Nakano T, Nishimura M, Kawakami Y, Omori Y, Ando S, Ichida T, Ishibe Y, Nihon Kyobu Shikkan Gakkai Zasshi, 33, 306 (1995)
- Stedman DH, Niki H, J. Phys. Chem., 77, 2604 (1973)
- Bufalini JJ, Stephens ER, Int. J. Air Water. Poll., 9, 123 (1965)
- Glasson WA, Tuesday CS, J. Am. Chem. Soc., 85, 2901 (1963)
- Pogrebnaya VL, Usov AP, Baranov AV, Nesterenko AI, Bez’yazychnyi PI, Zh. Prikl. Khim., 48, 954 (1975)
- Lewis RS, Deen WM, Chem. Res. Toxicol., 7, 568 (1994)
- Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC, Chem. Res. Toxicol., 6, 23 (1993)
- Awad HH, Stanbury DM, Int. J. Chem. Kinet., 25, 375 (1993)
- Long XL, Xin ZL, Chen MB, Li W, Xiao WD, Yuan WK, Sep. Purif. Technol., 58(3), 328 (2008)
- Jin DS, Deshwal BR, Park YS, Lee HK, J. Hazard. Mater., 135(1-3), 412 (2006)
- Kasper JM, Clausen CA, Cooper CD, J. Air Waste Manage. Assoc., 46, 127 (1996)
- Bhanarkar AD, Gupta RK, Biniwale RB, Tamhane SM, Int. J. Environ. Sci. Technol., 11, 1537 (2014)
- Thomas D, Vanderschuren J, Ind. Eng. Chem. Res., 36(8), 3315 (1997)
- Thomas D, Vanderschuren J, Sep. Purif. Technol., 18, 37 (1999)
- Schwartz SE, White WH, Adv. Environ. Sci. Eng., 4, 1 (1981)
- Park S, Lee Y, Kim G, Hwang S, Korean J. Chem. Eng., 33(12), 3417 (2016)
- Kuropka J, Environ. Prot. Eng., 37, 13 (2011)
- Pires M, Rossi MJ, Ross DS, Int. J. Chem. Kinet., 26, 1207 (1994)
- Baveja KK, Rao DS, Sarkar MK, J. Chem. Eng. Jpn., 12, 322 (1979)
- Thomas D, Vanderschuren J, Chem. Eng. Sci., 51(11), 2649 (1996)
- Wang TF, Wang JF, Chem. Eng. Sci., 62(24), 7107 (2007)
- Lee H, Lee S, Hwang S, Jin D, Korean Chem. Eng. Res., 54(3), 340 (2016)