화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.6, 1630-1637, June, 2017
Computational fluid dynamics study on the anode feed solid polymer electrolyte water electrolysis
E-mail:
A steady-state two-dimensional model for the anode feed solid polymer electrolyte water electrolysis (SPEWE) is proposed in this paper. Finite element procedure was employed to calculate the multicomponent transfer model coupled with fluid flow in flow channels and gas diffusion layers and electrochemical kinetics in catalyst reactive surface. The performance of the anode feed SPEWE predicted by this model was compared with the published experimental results and reasonable agreement was reached. The results show that oxygen mass fraction increases because of the water oxidation when water flows from the import to the export on the anode side. On the cathode side, hydrogen mass fraction varies little since hydrogen and water mix well. The flux of water across the electrolyte increased almost linearly with the increase of the applied current density. Since the ohmic overpotential loss increasing as the solid polymer electrolytes’ thickness increasing, the performance of the anode feed SPEWE with Nafion 112, 115, 117 decreases at the same applied current density.
  1. Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
  2. Millet P, Electrochim. Acta, 39(17), 2501 (1994)
  3. Millet P, Pineri M, Durand R, J. Appl. Electrochem., 19, 162 (1989)
  4. Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48(25-26), 3945 (2003)
  5. Gorgun H, Int. J. Hydrog. Energy, 31(1), 29 (2006)
  6. Zhang YJ, Wang C, Wan NF, Liu ZX, Mao ZQ, Electrochem. Commun., 9, 667 (2007)
  7. Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E, Electrochim. Acta, 52(12), 3889 (2007)
  8. Grigoriev SA, Millet P, Fateev VN, J. Power Sources, 177(2), 281 (2008)
  9. Chattopadhyay J, Srivastava R, Srivastava PK, Korean J. Chem. Eng., 30(8), 1571 (2013)
  10. Goldberg AB, Kheifets LI, Vaganov AG, Ogryz’ko-Zhukovskaya SG, Shabalin AV, J. Appl. Electrochem., 22, 1147 (1992)
  11. Onda K, Murakami T, Hikosaka T, Kobayashi M, Notu R, Ito K, J. Electrochem. Soc., 149(8), A1069 (2002)
  12. Choi PH, Bessarabov DG, Datta R, Solid State Ion., 175(1-4), 535 (2004)
  13. Awasthi A, Scott K, Basu S, Int. J. Hydrog. Energy, 36(22), 14779 (2011)
  14. Bockris JOM, Srinivasan S, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).
  15. Thampan T, Malhotra S, Zhang JX, Datta R, Catal. Today, 67(1-3), 15 (2001)
  16. Bard AJ, Faulkner LR, Electrochemical Methods, Wiley, New York (1980).
  17. Li XG, Principles of fuel cells, Taylor & Francis (2006).
  18. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S, Electrochim. Acta, 40(3), 297 (1995)
  19. Motupally S, Becker AJ, Weidner JW, J. Electrochem. Soc., 147(9), 3171 (2000)
  20. Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334 (1991)
  21. Perry RH, Green DW, Perry’s Chemical Engineer’s Handbook, Seventh Ed. (1997).
  22. Zawodzinski TA, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S, J. Electrochem. Soc., 140, 1981 (1993)
  23. Wu H, Berg P, Li XG, J. Power Sources, 165(1), 232 (2007)
  24. Guvelioglu GH, Stenger HG, J. Power Sources, 147(1-2), 95 (2005)
  25. Fuller TF, Newman J, J. Electrochem. Soc., 5, 1218 (1993)
  26. Meng H, Wang CY, Chem. Eng. Sci., 59(16), 3331 (2004)
  27. Scott K, Taama W, Cruickshank J, J. Power Sources, 65, 159 (1997)
  28. Sportsman S, Way D, Pez G,The 13th annual meeting of the North American Membrane Society, Long Beach, California (2002).