화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3102-3108, November, 2016
NOx removal by non-thermal plasma at low temperatures with amino groups additives
E-mail:
NOx removal from flue gas using direct current (DC) narrow pulsed discharge-induced non-thermal plasma (NTP) was experimentally investigated. Factors such as additives, NOx initial concentrations, residence time, reaction temperatures inside the NTP reactor, and so on were investigated to evaluate their effects on NOx removal efficiencies. The focus was on the effects of additives containing amino groups. The results showed that H2O addition enhanced NOx removal, NH3 could further increase the NOx removal efficiencies under the same conditions without an obvious NH3 slip, and N2H4 was the most effective additive by reducing NOx to N2. X-Ray diffraction (XRD) analysis of the products collected from the NTP reactor demonstrated that NOx removal inside the NTP reactor was mainly based on NOx oxidation when ammonia or H2O was used as an additive, while NOx removal was mainly based on NOx reduction with the N2H4 additive.
  1. GB 13223-2011, Emission standard of air pollutants for thermal power plants (2011).
  2. Kamuk B, Proceedings of The 17th Annual North American Waste-to-Energy Conference (NAWTEC17), Chantilly, Virginia, USA: American Society of Mechanical Engineers (2009).
  3. Fujii T, Rea M, Vacuum, 59, 228 (2000)
  4. Brutscher J, Gunzel R, Moller W, Surf. Coat. Technol., 93, 197 (1997)
  5. Rajanikanth BS, Das S, Srinivasan AD, Plasma Sci. Technol., 6, 2475 (2004)
  6. Niu J, Yang X, Zhu A, Shi L, Sun Q, Xu Y, Shi C, Catal. Commun., 7, 297 (2006)
  7. Oda T, Kato T, Takahashi T, Shimizu K, J. Electrost., 34, 268 (1998)
  8. Krawczyk K, Mlotek M, Appl. Catal. B: Environ., 30(3-4), 233 (2001)
  9. Miessner H, Francke KP, Rudolph R, Hammer T, Catal. Today, 75(1-4), 325 (2002)
  10. Wallis AE, Whitehead JC, Zhang K, Appl. Catal. B: Environ., 74(1-2), 111 (2007)
  11. Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Furuta S, IEEE T. Ind. Appl., 31, 957 (1995)
  12. Lin W, Zhang B, Hou W, Li D, Yang H, J. Environ. Sci., 21, 790 (2009)
  13. Li J, Ke R, Li W, Hao J, Catal. Today, 139, 49 (2008)
  14. Ighigeanu D, Martin D, Zissulescu E, Macarie R, Oproiu C, Cirstea E, Iovu H, Calinescu I, Iacob N, Vacuum, 77, 493 (2005)
  15. Onda K, Kusunoki H, Ito K, Ibaraki H, J. Appl. Phycol., 95, 3928 (2004)
  16. Finke B, Schroder K, Ohl A, Plasmas Process Polym., 5, 386 (2008)
  17. Hong L, Chen D, Proceedings of 2011 IEEE Power Engineering and Automation Conference, Wuhan, China (2011).
  18. Lee JB, Kim SD, Chem. Eng. J., 69(2), 99 (1998)
  19. Obradovic BM, Sretenovic GB, Kuraica MM, J. Hazard. Mater., 185(2-3), 1280 (2011)
  20. Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K, Fuel Process. Technol., 88(8), 817 (2007)
  21. Takaki K, Sato T, Mukaigawa S, Fujiwara T, Proceedings of 2007 IEEE Pulsed Power Plasma Science Conference, Albuquerque, USA (2007).
  22. Zhao GB, Garikipati SBJ, Hu XD, Argyle MD, Radosz M, Chem. Eng. Sci., 60(7), 1927 (2005)
  23. Mchale ET, Knox BE, Palmer HB, Proceedings of The Tenth Symposium (International) on Combustion, Cambridge, England:Combustion Institute (1965).
  24. Cho Y, Chang HA, KSME Int. J., 11, 428 (1997)
  25. Mok YS, Koh DJ, Shin DN, Kim KT, AAPG Bull., 86(3), 303 (2004)
  26. Broer S, Hammer T, Appl. Catal. B: Environ., 28(2), 101 (2000)
  27. Price TW, Evans DD, JPL Technical Report 32-1227 (1968).
  28. Leray A, Khacef A, Makarov M, Cormier JM, Proceedings of 20th Internatinal Symposium on Plasma Chemistry, Philadelphia:USA (2011).
  29. Tang X, Ye Z, Yi H, Li H, Yu Q, Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu: IEEE Computer Society (2010).
  30. Yumoto H, Matsudo S, Akashi K, Vacuum, 65, 509 (2002)
  31. Stevenson SA, Vartuli JC, J. Catal., 208(1), 100 (2002)
  32. Kaneko K, Imai J, Carbon, 27, 954 (1989)
  33. Guo RT, Pan WG, Ren JX, Zhang XB, Jin Q, Korean J. Chem. Eng., 30(1), 101 (2013)