화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.6, 1604-1618, June, 2017
Feasibility study and benefit analysis of biomass-derived energy production strategies with a MILP (mixed-integer linear programming) model: Application to Jeju Island, Korea
E-mail:
We developed a new approach to analyze the feasibility and benefits of biomass utilization strategies for energy production. To achieve this goal, we first generated a biomass-to-energy network which consists of different conversion technologies and corresponding compounds. We then developed new optimization models using a mixed integer linear programming technique to identify the optimal and alternative strategies and point out their major cost drivers. We applied these models to the biomass-derived energy supply problem on Jeju Island, Korea, to answer a wide range questions related to biomass utilization. What is the cheapest way to produce liquid fuels from available biomass on Jeju Island? How much demand can be satisfied by biomass-derived liquid fuels? What combination of technologies and biomass resources gives the best economic benefits or productivity? Based on the case study of Jeju Island, we could provide useful guidelines to policy-makers and stakeholders in the energy business.
  1. Sammons N, Eden M, Yuan W, Cullinan H, Aksoy B, Environ. Prog., 26(4), 349 (2007)
  2. Shin I, Park G, Lee J, Kim E, Kim Y, 2014 IEEE Conference and Expo, 1 (2014).
  3. Han M, Kim Y, Cho WS, Cho GW, Chung BW, Korean J. Chem. Eng., 33(1), 223 (2016)
  4. Gutierrez LF, Sanchez OJ, Cardona CA, Bioresour. Technol., 100(3), 1227 (2009)
  5. Wright M, Brown RC, Biofuel. Bioprod. Bior., 1(3), 191 (2007)
  6. Clark JH, J. Chem. Technol. Biotechnol., 82(7), 603 (2007)
  7. Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236 (2015)
  8. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lucas J, NREL/LP-510-32438 (2002).
  9. Brennan M, Specca D, Schilling B, Tulloch D, Paul S, Sullivan K, Helsel Z, Hayes P, Melillo J, Simkins B, New Jersey Agr. Exp. Station Publ., 1 (2007)
  10. Ghatak HR, Renew. Sust. Energ. Rev., 15(8), 4042 (2011)
  11. Braden DJ, Henao CA, Heltzel J, Maravelias CC, Dumesic JA, Green Chem., 13(7), 1755 (2011)
  12. Sen SM, Henao CA, Braden DJ, Dumesic JA, Maravelias CT, Chem. Eng. Sci., 67(1), 57 (2012)
  13. Hosseini SA, Shah N, Interface Focus., 1(2), 255 (2011)
  14. Piccolo C, Bezzo F, Biomass Bioenerg., 33(3), 478 (2009)
  15. Kazi FK, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A, NREL/TP-6A2-46588 (2010).
  16. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G, Fuel, 89, S20 (2010)
  17. Hosseini SA, Lambert R, Kucherenko S, Shah N, Energy Fuels, 24(9), 4673 (2010)
  18. Ngamprasertsith S, Sunphorka S, Kuchonthara P, Reubroycharoen P, Sawangkeaw R, Korean J. Chem. Eng., 32(10), 2007 (2015)
  19. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A, Fuel, 89, S29 (2010)
  20. Brown TR, Wright MM, Brown RC, Biofuel. Bioprod. Bior., 5(1), 54 (2011)
  21. Larson ED, Consonni S, Katofsky RE, Iisa K, Frederick W, DE-FG26-04NT42260, Princeton Environmental Institute, Princeton University, Princeton, NJ, 21 (2006).
  22. Dornburg V, Faaij APC, Meuleman B, Resour. Conserv. Recycl., 49(1), 68 (2006)
  23. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14(2), 578 (2010)
  24. Chambost V, Stuart PR, Ind. Biotechnol., 3(2), 112 (2007)
  25. James LK, Swinton SM, Thelen KD, Agron. J., 102(2), 675 (2010)
  26. Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012 (2011)
  27. Kim JW, Lee SH, Kim SS, Park SH, Jeon JK, Park YK, Korean J. Chem. Eng., 28(9), 1867 (2011)
  28. Um SI, Jung J, Choi S, Won J, Lee J, J. Energ. Clim. Change, 5(1), 155 (2010)
  29. Woo YB, Cho S, Kim J, Kim BS, Int. J. Hydrog. Energy, 41(12), 5405 (2016)
  30. Kokossis AC, Yang AD, Comput. Chem. Eng., 34(9), 1397 (2010)
  31. Santibanez-Aguilar JE, Gonzalez-Campos JB, Ponce-Ortega JM, Serna-Gonzalez M, El-Halwagi MM, Ind. Eng. Chem. Res., 50(14), 8558 (2011)
  32. Garcia DJ, You FQ, AIChE J., 61(2), 530 (2015)
  33. Kim J, Sen SM, Maravelias CT, Energy Environ. Sci., 6(4), 1093 (2013)
  34. Maronese S, Ensinas AV, Mian A, Lazzaretto A, Marechal F, Ind. Eng. Chem. Res., 54(28), 7038 (2015)
  35. Kim S, Won W, Kim J, Renew. Energy, 97(1), 177 (2016)
  36. No K, Jeon Y, Yang J, Cheon H, Jeong S, Korea Livestock Economic Institute (KLEI/K10-06) (2010).
  37. Kook JW, Lee SH, Appl. Chem. Eng., 26(2), 178 (2015)
  38. Park YC, Kim DS, Huh J, Kim YG, World Renewable Energy Congress (ISBN 978-91-7393-070-3) (2011).
  39. Seo Y, Current MSW Management and Waste-to-Energy Status in the Republic of Korea, Columbia University, New York (2013).
  40. Kook JW, Lee SH, Appl. Chem. Eng., 26(2), 178 (2015)
  41. Bae J, Korean energy economic review (ISBN 978-89-5504-228-3) (2009).
  42. Min EJ, Kim S, Korean energy economic review, 7(1), 133 (2008)
  43. Castillo L, Dorao C, J. Nat. Gas. Sci. Eng., 2(6), 302 (2010)
  44. Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP, Chem. Eng. J., 160(1), 311 (2010)
  45. Lim M, Bang J, Yoon Y, Trans. Korean Hydrog. New Energy Soc., 17(2), 218 (2006)
  46. Sloan M, Meyer R, ICF International, Inc., Propane Education & Research Council: Washington, DC (2009).
  47. Rushton M, CanBio Annual Conference (2012).
  48. Schwartz TJ, van Heiningen AR, Wheeler MC, Green Chem., 12(8), 1353 (2010)
  49. Chetty R, Scott K, J. New Mat. Electrochem. Syst., 10(3), 135 (2007)
  50. Supple D, MIT Energy Club, http://web.mit.edu/mit_energy (latest update 04.15.07) (2007).
  51. Lassi U, Keiski R, Kordas K, Mikkola J, Energy Research at the University of Oulu (2009).
  52. Wood Resources International LLC, North American Wood Fiber Review 06-11 (2011).
  53. Ash M, United States Department of Agriculture (OCS-15c) (2015).
  54. Lee Y, Kim K, Jang Y, Park K, RDA Interrobang, 99 (2013)
  55. Boundy B, Diegel SW, Wright L, Davis SC, United States Department of Energy (ORNL/TM-2011/446) (2011).
  56. Yun J, Korea Institute of Industrial Technology (KITECH 06-14) (2014).
  57. Pfeffer M, Wukovits W, Beckmann G, Friedl A, Appl. Therm. Eng., 27(16), 2657 (2007)
  58. Ahmetovic E, Martin M, Grossmann IE, Ind. Eng. Chem. Res., 49(17), 7972 (2010)
  59. Dornburg V, Faaij AP, Resour. Conserv. Recycl., 48(3), 227 (2006)
  60. Palsson BO, Fathi-Afshar S, Rudd DF, Lightfoot EN, Science, 213, 513 (1981)
  61. Jimenez A, Chavez O, Chem. Eng. J., 37(1), B1 (1988)
  62. Dimian AC, Comput. Aided Chem. Eng., 24, 309 (2007)
  63. Batsy DR, Solvason CC, Sammons NE, Chambost V, Bilhartz DL, II MRE, El-Halwagi MM, Stuart PR, Integrated Biorefineries: Design, Analysis, and Optimization, 1 (2012).
  64. Kamm B, Kamm M, Biorefineries.multi product processes, Springer (2007).
  65. Lynd LR, Wang MQ, J. Ind. Ecol., 7, 17 (2003)
  66. Fernando S, Adhikari S, Chandrapal C, Murali N, Energy Fuels, 20(4), 1727 (2006)
  67. Hotel HD, Herndon V, Beck D, Boyack K, Berman M, Sandia National Laboratories (SAND98-0643) (1997).
  68. Bright RM, Strømman AH, J. Ind. Ecol., 13(4), 514 (2009)
  69. Bright RM, Strømman AH, Hawkins TR, J. Ind. Ecol., 14(3), 422 (2010)
  70. Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E, Biofuel. Bioprod. Bior., 3(5), 534 (2009)
  71. Rosenthal RE, GAMS - A User’s Guide, Gams Development Corp. (2006).
  72. Gonzalez R, Daystar J, Jett M, Treasure T, Jameel H, Venditti R, Phillips R, Fuel Process. Technol., 94(1), 113 (2012)
  73. Jones SB, Zhu Y, Valkenburg C, Richland, WA: Pacific Northwest National Laboratory (PNNL-18482) (2009).