화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.1, 89-94, January, 2012
Investigation of CO2 adsorption by bagasse-based activated carbon
E-mail:
Bagasse-based activated carbon (BAC) and amine-modified BAC were prepared and investigated for CO2 adsorption capacity. Modifying BAC with amines resulted in a decrease of surface area, but the decreasing magnitude varied depending on type and loading rate of amines. At room temperature, the unmodified BAC was able to adsorb more CO2 than the amine-modified BAC. This ability was related to the higher surface area of unmodified than that of the modified BAC. When temperature increased, CO2 adsorption capacity of all absorbents was decreased. However, above 323 K and a concentration of CO2 lower than 30% v/v, the BAC modified with PEI at 5 and 25 wt% showed higher adsorption capacity. Among all adsorbents under 15% CO2 and 348 K, BAC-PEI25 showed the highest adsorption capacity (0.20 mmol/g).
  1. IPCC, “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change” (2007)
  2. IPCC, “Carbon Dioxide Capture and Storage” (2005)
  3. Arenillas A, Smith KM, Drage TC, Snape CE, Fuel., 84, 2204 (2005)
  4. Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251 (2007)
  5. Mignard D, Sahibzada M, Duthie JM, Whittington HW, Int. J. Hydrog. Energy., 28, 455 (2003)
  6. Zhao H, Hu J, Wang J, Zhou L, Liu H, Acta Phys-Chim. Sin., 23, 801 (2007)
  7. Erga O, Juliussen O, Lidal H, Energy Convers. Manage., 36, 387 (1995)
  8. Wall TF, P. Combust. Inst., 31, 31 (2007)
  9. Stewart C, Hessami MA, Energy Conv. Manag., 46(3), 403 (2005)
  10. Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, Chuang SSC, Sep. Purif. Technol., 35(1), 31 (2004)
  11. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29 (2003)
  12. Guo B, Chang L, Xie K, J. Nat. Gas Chem., 15, 223 (2006)
  13. Sarkar SC, Bose A, Energy Conv. Manag., 38, S105 (1997)
  14. Sun Y, Wang YX, Zhang Y, Zhou YP, Zhou L, Chem. Phys. Lett., 437(1-3), 14 (2007)
  15. Son SJ, Choi JS, Choo KY, Song SD, Vijayalakshmi S, Kim TH, Korean J. Chem. Eng., 22(2), 291 (2005)
  16. Wu G, Jeong TS, Won CH, Cui L, Korean J. Chem. Eng., 27(5), 1476 (2010)
  17. Thambimuthu K, Davidson J, Gupta M, “CO2 capture and reuse” (IPCC Workshop on Carbon Capture Regina, Canada, 2002).
  18. Van Der Vaart R, Huiskes C, Bosch H, Reith T, Adsorption., 6, 311 (2000)
  19. Maroto-Valer MM, Tang Z, Zhang YZ, Fuel Process. Technol., 86(14-15), 1487 (2005)
  20. Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ, Appl. Surf. Sci., 254(22), 7165 (2008)
  21. Zhu T, Yang S, Choi DK, Row KH, Korean J. Chem. Eng., 27(6), 1910 (2010)
  22. Tsai WT, Chang CY, Lee SL, Bioresour. Technol., 64(3), 211 (1998)
  23. Onal Y, Akmil-Basar C, Sarici-Ozdemir C, Erdogan S, J. Hazard. Mater., 142(1-2), 138 (2007)
  24. Stubington JF, Aiman S, Energy Fuels, 8(1), 194 (1994)
  25. Ioannidou O, Zabaniotou A, Renew. Sust. Energy Rev., 11, 1966 (2007)
  26. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierott RAi, Rouquerol J, Siemieniewska T, Pure. Appl. Chem., 57, 603 (1985)
  27. Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H, Int. J. Green Gas Con., 2, 3 (2008)
  28. Hwang KS, Han L, Park DW, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(1), 241 (2010)
  29. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel., 86, 2204 (2007)
  30. Chen C, You KS, Ahn JW, Ahn WS, Korean J. Chem. Eng., 27(3), 1010 (2010)