Korean Journal of Chemical Engineering, Vol.29, No.1, 95-102, January, 2012
Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method
E-mail:
Goethite nanoparticles synthesized using hydrazine sulfate as a modifying agent were evaluated for As(V) adsorption capacity. The nanoparticles were characterized for their morphological and structural features. The precipitated goethite particles were spherical with particle size of less than 10 nm. Batch adsorption study was carried out systematically varying parameters such as pH, contact time, initial As(V) concentration and adsorbent doses. The Langmuir isotherm represented the equilibrium data well and the estimated monolayer adsorption capacity at ambient temperature was 76 mg/g, which is significantly higher than most of the adsorbents reported in the literature. Adsorption kinetic data were better represented by the pseudo-second order kinetic model. Intra-particle diffusion played a significant role in the rate controlling process in the initial hour. Desorption study showed that the loaded adsorbent could be regenerated
when treated with dilute sodium hydroxide solution of pH 13.
- Bissen M, Frimemel FH, Acta Hydroch. Hydrob., 30(1), 9 (2003)
- WHO (World Health Organisation) Guidelines for drinking water quality (1993)
- Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1 (2007)
- Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X, Water Res., 39, 2327 (2005)
- Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL, Sci. Technol. Adv. Mat., 8, 71 (2007)
- Tuutijarvi T, Lu J, Sillanpaa M, Chen G, J. Hazard. Mater., 166(2-3), 1415 (2009)
- Kanel SR, Greneche JM, Choi H, Environ. Sci. Technol., 40, 2045 (2006)
- Jegadeesan G, Mondal K, Lalvani SB, Environ. Progr., 24, 289 (2005)
- Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Calvin VL, Tomson MB, J. Mater. Res., 20(12), 3255 (2005)
- Waychunas GA, Kim CS, Banfield JF, J. Nanopart. Res., 7, 409 (2005)
- Grossl PR, Sparks DL, Geoderma., 67, 87 (1995)
- Manning BA, Fendorf SE, Goldberg S, Environ. Sci. Technol., 32, 2383 (1998)
- Matis KA, Zouboulis AI, Malamas FB, Afonso MDR, Hudson MJ, Environ. Pollut., 97, 239 (1997)
- Bowell RJ, Appl. Geochem.,, 9, 279 (1994)
- Fendorf S, Eick MJ, Grossl P, Sparks DL, Environ. Sci. Technol., 31(2), 315 (1997)
- Music S, Sanc A, Popovic S, Nomura K, Sawada T, Croat.Chem. Acta,, 73(2), 541 (2000)
- Parida K, Das J, J. Colloid Interface Sci., 178(2), 586 (1996)
- Ruan HD, Frost RI, Kloprogge JT, Duong L, Spectrochim.Acta A,, 58, 967 (2002)
- Ristic M, De Grave E, Music S, Popovic S, Orehovec Z, J. Molecular Structure., 834-836, 454 (2007)
- Tripathy SS, Raichur AM, Chem. Eng. J., 138(1-3), 179 (2008)
- Lagergren S, Kungliga Svenska Vetenskapsakademiens Handlingar., 24, 1 (1898)
- Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
- Weber WJJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civil Engineers., 89, 31 (1963)
- Altundogan HS, Altundogan S, Tumen F, Bildik M, Waste Manage., 20, 761 (2000)
- Anderson MA, Ferguson JF, Gavis J, J. Colloid Interface Sci., 54, 391 (1976)
- Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng.Chem. Fundam., 5, 212 (1966)
- Sigg L, Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. In: Stum W. (Ed.), John Wiley and Sons, New York (1987)
- O’Reilly SE, Strawn DG, Sparks DL, Soil Sci. Soc. Am. J., 65, 67 (2001)
- Gupta K, Saha S, Ghosh UC, J. Nanopart. Res., 20, 1361 (2008)
- Solozhenkin PM, Deliyanni EA, Bakoyannakis VN, Zouboulis AI, Matis KA, J. Min. Sci., 39(3), 287 (2003)
- Wasay SA, Haron MJ, Uchiumi A, Tokunaga S, Water Res., 30(5), 1143 (1996)
- Park H, Myung NV, Jung H, Choi H, J. Nanopart. Res., 11, 1981 (2009)
- Mohapatra D, Mishra D, Park KH, J. Environ. Sci., 20, 683 (2008)
- Chutia P, Kato S, Kojima T, Satokawa S, J. Hazard. Mater., 162(1), 440 (2009)
- Borah D, Satokawa S, Kato S, Kojima T, J. Colloid Interface Sci., 319(1), 53 (2008)