화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.5, 588-598, September, 1993
방향족 폴리에스테르의 합성 : Ⅲ. 금속촉매 존재하에서의 중축합 반응속도와 온도의존성
Synthesis of Aromatic Polyester : Ⅲ. Kinetic Rate and Temperature Dependence on the Polycondensation in the Presence of Various Metal Catalysts
초록
여러가지 금속촉매와 안정제를 사용하여 275∼295℃에서 bits(2-hydroxyethyl)naphthalate(BHN) 또는 그 올리고머를 중축합 반응시켰을 때의 반응속도와 온도의존성을 살펴, 이들 촉매의 특성과 농도에 대한 영향을 조사하였다. 금속촉매의 활성은 Ti(Ⅳ) > Ti(Ⅳ)+Sb(Ⅲ)+P > Sb(Ⅲ)+P > Sb(Ⅲ) > Pb(Ⅱ) ≒ Mn(Ⅱ) > Co(Ⅱ) ≒Sn(Ⅱ)+P > Zn(Ⅱ) > Mg(Ⅱ)순으로 감소하였다. Sb(Ⅲ)와 Ti(Ⅳ), 그리고 복합촉매의 활성은 촉매농도와 반응온도가 증가함에 따라 지속적으로 증가하였고, Zn(Ⅱ), Pb(Ⅱ). 그리고 Co(Ⅱ)등과 같은 약염기성 촉매보다 반응전반에 걸쳐 활성이 유지되었다. Ti(Ⅳ)의 촉매활성은 Sb(Ⅲ)보다 성장반응에 우수하게 작용하였고, 또한 Sb2O3+trimethyl phosphate(TMP)의 반응성 결과에서는 성장반응과 분해반등의 속도가 같은 점에서 최대 분자량(최대 점도)값을 나타냈다. 각각의 반응온도에 따른 최대 점토값이 나타나는 시간은 짧아졌고 반응온도가 높을수록 반응속도도 빨라졌다. 그렇지만 최대 점도.값은 반응온도가 높을수록 감소하였다. 이러한 현상은 성장반응보다 온도변화에 의해 영향을 더 많이 받는 분해반응에 의한 것으로 설명된다. 결론적으로, 반응온도를 낮추고 교반속도를 증가시켰을 때 고된자량의 중합물을 얻을 수 있었다.
The rate and temperature dependence of the catalyzed polycondensation reaction of bits(2-hydroxyethyl)naphthalate(BHN) was kinetically investigated in the presence of various mctallic catalysts and stabilizers ranging 275∼295℃. The effect of the nature and concentration of these catalysts on the rate of polycondensation has been investigated. The order of decreasing catalytic effect of various metal ions on the polycondensation of BHN was founded to be ; Ti(Ⅳ) > Ti(Ⅳ)+Sb(Ⅲ)+P > Sb(Ⅲ)+P > Sb(Ⅲ) > Pb(Ⅱ) ≒ Mn(Ⅱ) > Co(Ⅱ) ≒Sn(Ⅱ)+P > Zn(Ⅱ) > Mg(Ⅱ). The catalytic activities of Sb(Ⅲ), Ti(Ⅳ), and complex catalyst(Sb+Ti +P) were found to be constantly increased with increasing concentration of catalysts and reaction temperature, and kept high through the whole reaction than that of weak base catalysts(Zn(Ⅱ), Pb(Ⅱ), and Co(Ⅱ) etc.). The catalytic activity of Ti(Ⅳ) was better in propagation reaction than that of Sb(Ⅲ) catalyst. From the results of reactivities with Sb2O3 and trimethyl phosphate(TMP), the maximum molecular weight(the highest viscosity) was shown at the point which is supposed to have same rate of propagation and degradation. The maximum viscosity with each reaction temperature was shifted to short time period. And also, the faster reaction rate was obtained with higher temperature. However, the better maximum viscosity was decreased with higher reaction temperature. This phenomenon may be
  1. Maerov SB, J. Polym. Sci. A: Polym. Chem., 17, 4033 (1979)
  2. Mehrotra RC, Bhatnagar DD, J. Ind. Chem. Soc., 42, 327 (1965)
  3. VanUitert LG, Fernelius WC, Douglas BE, J. Am. Chem. Soc., 75, 2736 (1953) 
  4. Kamatani H, Konagaya S, Nakamura Y, Polym. J., 12, 125 (1980) 
  5. Shah TH, Bhatty JI, Gamlen GA, Dollimore D, Polymer, 25, 1333 (1984) 
  6. Stevenson RW, Nettleton HR, J. Polym. Sci. A: Polym. Chem., 20, 205 (1982)
  7. Chang S, Sheu MF, Chang NH, J. Polym. Sci. A: Polym. Chem., 20, 2053 (1982)
  8. Kamatani H, Konagaya S, Kobunshi Ronbunshu, 36, 293 (1979)
  9. Hovenkamp SG, J. Polym. Sci. A: Polym. Chem., 9, 3617 (1971) 
  10. Tomita K, Ida H, Polymer, 16, 185 (1975) 
  11. Tomita K, Polymer, 14, 50 (1973) 
  12. Tomita K, Polymer, 17, 221 (1976) 
  13. Tomita K, Kobunshi Ronbunshu, 33, 96 (1976)
  14. Park SS, Im SS, Kim DK, Cho HN, Kim JY, J. Korean Fiber Soc., 29, 42 (1992)
  15. Marshall J, Todd A, Trans. Faraday Soc., 49, 67 (1953) 
  16. Park SS, Im SS, Kim DK, Polym.(Korea), 17(2), 212 (1993)
  17. Park SS, Im SS, Kim DK, Polym.(Korea), 17(3), 324 (1993)
  18. Anon, Research Disclosure, 294, 807 (1988)
  19. Anon, Research Disclosure, 294, 816 (1988)
  20. Jackson WJ, Wicker TH, U.S. Patent, 4,745,211 (1988)
  21. vanSickle DE, U.S. Patent, 4,876,378 (1989)
  22. Wiegand E, Niemann W, Kohler M, Ger. Offen, 2,455,666 (1975)
  23. Shigeo U, European Patent, 225,631 (1987)
  24. Ravens DA, Ward IM, Trans. Faraday Soc., 57, 150 (1961)