화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.5, 580-587, September, 1993
생체적합성과 생분해성을 갖는 폴리에테르우레탄우레아의 합성과 물리적 성질에 관한 연구: Ⅰ. 실리콘을 함유하는 폴리에테르우레탄우레아의 합성 및 물리적 성질
Synthesis and Physical Properties of Biocompatible and Biodegradable Polyetherurethaneurea :Ⅰ. Synthesis and Physical Properties of Polyetherurethaneurea Containing Polydimethylsiloxane Segament
초록
메틸렌디페닐이소시아네이트(MDI)와 폴리테트라메틸렌글리콜(PTMG)로부터 합성한 폴리우레탄 prepolymer를 에틸렌디아민 또는 양말단에 아미노기를 갖는 폴리디메틸실록산(AT-PDMS)으로 쇄연장하여 폴리에테르우레탄우레아(PU)및 실리콘을 함유하는 폴리에테르우레탄우레아(PUS)를 합성하였다 쇄연장제인 AT-PDMS는 octamethylcyclotetrasiloxane과 1.3-bis(3-aminopropyl)tetramethylsiloxane을 반응시켜 합성하였다. PU-S 필름의 인장강도는 에틸렌디아민을 쇄연장제로 사용하여 합성된 PU보다 낮았고 신장율은 PU보다 크게 나타났다. 연중량분석결과 PU는 450℃에서 거의 완전히 분해하였으나 PU-5-3는 같은 온도에서 28%의 잔유물이 남았다. 한편 필름표면의 적심성을 알아보기 위해 물접촉각을 측정한 결과 PU는 86℃ 나타내는 반면 PU-5는 102∼106°를 나타내었다. 또한 ESCA에 의해 PU 및 PU-5의 공기측과 기질측 표면의 원소조성을 조사한 결과 PU의 공기측 표면에는 hard segment가 많이 분포되어 있는 반면. PU-S의 공기측 표면에는 실리콘 segmentt가 많이 분포되어 있음을 알 수 있었다.
The polyurethane prepolymers, which were previously systhesized from 4,4'-diphenylmethane diisocyanate(MDI) and polytetramethylene glycol(PTMG), were chain extended by ethylene diamine or polydimethytsiloxane having amino group at both ends of the chain(AT-PDMS), giving polyetherurethaneurea(PU) and polyetherurethanerea containing PDMS segment(PU-S) ,respectively The chain extender AT-PDMS was synthesized by the reaction of octamethylcyclotetrasiloxane with 1,3-bis(3-aminopropyl)tetramethylsiloxane. The tensile strength of PU-S was smaller than that of PU while the elongation of PU-S was larger than that of PU. In theraml gravimetric analysis, PU was almost completely degraded at 450℃ but PU-S-3 showed about 28% residue at the same temperature. The water contact angle of the air surface of PU-S-3 showed of PU-S film(102∼106°) was larger than that of PU film(86°). The elemental ratio of the air surface and the substrate surface of PU and PU-S was estimated by the electron spectroscopy for chemical analysis(ESCA). The air facing of PU film contains a greater concentration of hard segment than the substrate surface. On the other hand, the air facing surface of PU-S is found to be covered mostly with polydimethylsiloxane segment.
  1. Han MJ, Kwon YH, Polym.(Korea), 2(4), 204 (1978)
  2. Ahn TO, Lee SY, Lee SW, Jeong HM, Polym.(Korea), 14(5), 497 (1990)
  3. Ebdon JR, Hourston DJ, Klein PG, Polymer, 25, 1633 (1984) 
  4. Iwamoto R, Ohta K, Matsuda T, Imachi K, J. Biomed. Mater. Res., 20, 507 (1986) 
  5. McMillin CR, "High Performance Biomaterials," Technomic Publishing Co., 37-49 (1991)
  6. Perrin DD, Armargo WLF, "Purification of Laboratory Chemicals," 3rd Ed., Pergamon Press (1988)
  7. Kang IK, Ito Y, Sisido M, Imanishi Y, Polym. J., 19, 1329 (1987) 
  8. Yang CZ, Li C, Cooper SL, J. Polym. Sci. B: Polym. Phys., 29, 75 (1991) 
  9. Yilgor I, Riffle JS, Wilkes GL, McGrath JE, Polym. Bull., 8, 535 (1982)
  10. Kira K, Minokami T, Yamamoto N, Hayashi K, Yamashita I, Biomaterials, 1, 29 (1983) 
  11. Chiappori C, Russo S, Turturro A, Polymer, 22, 534 (1981) 
  12. Yilgor I, Shaahan AK, Steckle WP, Tyagi D, Wilkes GL, McGrath JF, Polymer, 25, 1800 (1984) 
  13. Sela M, Berger A, J. Am. Chem. Soc., 77, 1893 (1955) 
  14. Atwell WH, Burns GT, Zank GA, "Organosilicon Preceramic Polymer Technology," in "Frontier of Organosilicon Chemistry," Ed. by A.R. Bassindale and P.P. Gaspar, The Royal Society of Chemistry, pp. 28-39 (1991)
  15. Ratner BD, Ann. Biomed. Eng., 11, 313 (1983) 
  16. Kang IK, Ito Y, Sisido M, Imanishi Y, Biomaterials, 9, 138 (1988) 
  17. Paik CS, Hu CB, J. Biomed. Mater. Res., 13, 161 (1979) 
  18. Costa VSD, Brier-Russell D, Salzman EW, Merril EW, J. Colloid Interface Sci., 80, 445 (1981) 
  19. Lelah MD, Pierce JA, Lambrecht LK, Cooper SL, J. Colloid Interface Sci., 104, 422 (1985)