화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.3, 324-334, May, 1993
방향족 폴리에스테르의 합성;Ⅱ.금속촉매별에 따른 에스테르교환반응시 온도의존성
The Synthesis of Aromatic Polyester; Ⅱ. Temperature Dependence of Transesterification in the Presence of Various Metal Catalysts
초록
Dimethyl 2,6-naphthalate(2,6-DMN)과 Ethylene glycol을 190∼250℃ 사이의 일정온도에서 촉매별로 에스테르교환반응시켜 반응속도와 온도의존성을 살펴보았다. 이때 반응성도에 따라 반응계에서 부산물로 유출되어 나오는 메탄올의 양을 측정하여 반응도를 측정하였다. 이 전의 결과와 마찬가지로, Zn++, Pb++ 등의 약염기성 금속화합물의 반응도는 촉매농도 뿐만 아니라 온도상승에도 지속적으로 증가하였다. 만족스러운 속도론적인 처리를 하기 위해서는 속도상수를 초기속도 상수와 전체속도상수로 분류하는 것이 타당하였다. 2,6-PEN에서 Zn++의 활성화에너지값을 PET의 활성화에너지값과 비교하여 2배정도 높음을 알았다.
The kinetic rate and temperature dependence of transesterification of 2,6-DMN with ethylene glycol was investigated in the presence of various catalysts under a given temperature ranging from 190 to 250℃. The degree of reaction was determined by the measurement of output of methanol which was distilled from the reactor. As was established earlier, the reactivity of metal compound (e.g. Zn++, Pb++ etc.) known as a weak-base was found to be constantly increased as the concentration of catalysts and temperature was increased. The rate constant was divided into initial and total rate constant for a satisfactory kinetic evaluation. And also, Activation energy of Zn++ in 2,6-PEN was as about 2 times as better than that of Zn++ in PET.
  1. Sorsta MF, Chebatureva NA, Mosk. Khim. Tekhmol. Inst., 61, 103 (1969)
  2. Datye KV, Raje HM, J. Appl. Polym. Sci., 30, 205 (1985) 
  3. Yamanis J, Adelman M, J. Polym. Sci. A: Polym. Chem., 14, 1961 (1976)
  4. Ravindranath K, Mashelkar RA, J. Polym. Sci. A: Polym. Chem., 20, 3447 (1982)
  5. Ravindranath K, Mashelkar RA, Chem. Eng. Sci., 41(9), 2197 (1986) 
  6. Griehl W, Schnock G, J. Polym. Sci. A: Polym. Chem., 30, 413 (1957)
  7. Fontana CM, J. Polym. Sci. A: Polym. Chem., 6, 2343 (1968) 
  8. Challa G, Makromol. Chem., 38, 123 (1960) 
  9. Sumoto M, Kogyo Kagaku Zasshi(J. Chem. Soc. Jpn. Ind. Chem. Sect.), 66, 1867 (1963)
  10. Yoda K, Kogyo Kagoku Zasshi, 74, 1476 (1971)
  11. Peebles LH, Wagner WS, J. Phys. Chem., 63, 1206 (1959) 
  12. Hovenkamp SG, J. Polym. Sci. A: Polym. Chem., 9, 3617 (1971) 
  13. Walker CC, J. Polym. Sci. A: Polym. Chem., 21, 623 (1983)
  14. Arunpal A, Chem. Age Ind., 29, 733 (1978)
  15. Barandiaran MJ, Asua JM, J. Polym. Sci. A: Polym. Chem., 27, 4241 (1989) 
  16. Shah TH, Bhatty JI, Gamlen GA, Dollimore D, J. Macromol. Sci.-Chem., 21(4), 413 (1984)
  17. Tomita K, Kobunshi Ronbunshu, 33, 417 (1976)
  18. Tomita K, Ida H, Polymer, 14, 55 (1973) 
  19. VanUitert LG, Fernelius WC, Douglas BE, J. Am. Chem. Soc., 75, 2736 (1953) 
  20. Anon, Res. Disclosure, 294, 807 (1988)
  21. Anon, Res. Disclosure, 294, 816 (1988)
  22. Jackson WJ, Wicker TH, U.S. Patent, 4,745,211 (1988)
  23. VanSickle DE, U.S. Patent, 4,876,378 (1989)
  24. Wiegand E, Niemann W, Kohler M, Ger. Offen., 2455666 (1975)
  25. Shigeo U, European Patent, 225631 (1987)
  26. Park SS, Im SS, Kim DK, Polym.(Korea), 17(2), 212 (1993)
  27. Hill CG, "An Introduction to Chemical Engineering Kinetics & Reactor Design," Vol. 3, 24, John Wiley & Sons, New York (1977)
  28. Levenspiel O, "Chemical Reaction Engineering," Chapt. 2, 29, John Wiley & Sons, New York (1972)