화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.5, 569-579, September, 1993
용해도 파라미터 개념에 의한 폴리에틸렌 테레프탈레이트의 용매 유도 결정화 해석
Analysis on the Solvent-induced Crystallization of Poly(ethylene terephthalate) by Solubility Parameter Concept
초록
3성분 용해도 파라미터 개넘을 적용하여 여러 가지 용매들에 의한 poly(ethylene terephtalate)(PET)의 결정화 거동을 분석해 보았다. 실험 결과 결정면은 용매 종류에 관계없이 (010)면으로부터 우세하게 성장하나, PET와 용해도 파라미터 거리(Δ))가 가까운 용매로 처리한 필름일수록 짧은 시간에 결정면들이 성장하는 것을 확인할 수 있었다. 그리고 용해도 파라미터 처리(Δ)가 가까운 용매들일수록 같은 시간에 처리했음에도 불구하고 높은 결정화도를 나타내었고, 필름 내부에 형성된 void의 이동속도도 빨랐으며, PET 사슬의 ethylene moiety가 gauche에서 trans 형태로 더 많이 바뀌었음을 알 수 있었다. 위의 결과는 PET와 용해도 파라미터 거리(Δ)가 짧은 용매일수록 PET와 높은 상용성을 가져서 내부로 침투가 용이해지기 때문이라 생각된다.
The crystallization behavior of poly(etllylene terephthalate) in various solvents was ana]yzed by the concept of three-component solubility parameter The growth of crystallite size of perpendicular to (010) plant was prevalent, which was Independent of the kinds of solvent. It was ascertained that the nearer the solubility parameter distance(S.P.D) between PET and solvents was, the shorter the growth time of crystallite planes were. The nearer the S.P.D was, the higher the crystallinity of PET films was and the faster the transport velocity of void formed by penetration of solvent into the inner part of PET film. IR-spectra, also, showed that transformation from gauch to trans comformation of ethylene moiety in PET by solvent induced crystallization(SINC) was larger, when solvent had a short S.P.D. The above results may be caused by the fact that, in the case of solvent having short S.P.D, solvent penetrated easily into the PET film because of high compatibility between polymer and solvent.
  1. Spence J, J. Phys. Chem., 45, 401 (1941) 
  2. Baker W, Fuller C, Pape N, J. Am. Chem. Soc., 64, 766 (1942)
  3. Wilkeand GL, Parlapiano J, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 17, 937 (1976)
  4. Ware RA, Tirtowidjojo S, Cohen C, J. Appl. Polym. Sci., 26, 2975 (1981) 
  5. Jemeel H, Waleman J, Rebenfeld L, J. Appl. Polym. Sci., 26, 1795 (1981) 
  6. Jameel H, Noether HD, Rebenfeld L, J. Appl. Polym. Sci., 27, 773 (1982) 
  7. During CJ, Rebenfeld L, Russel WB, Weigmann HD, J. Polym. Sci. B: Polym. Phys., 24, 1321 (1986) 
  8. Im SS, Lee HS, J. Appl. Polym. Sci., 37, 1801 (1989) 
  9. Waywood WJ, During CJ, Polym. Eng. Sci., 27, 1265 (1987) 
  10. Wang J, Dibenedetto AT, Johnson JF, Huang SJ, Cercena JL, Polymer, 30, 718 (1989) 
  11. Immirzi A, deCandia F, Iannelli P, Zambelli A, Vittoria V, Makromol. Chem. Rapid Commun., 9, 761 (1961) 
  12. Hildebrand JH, Scott RL, The Solubility of Non-Electrolytes, 3rd ed., Dover, New York (1949)
  13. Hansen CM, J. Paint Technol., 39, 104 (1967)
  14. Moore WR, Sheldon RP, Polymer, 2, 315 (1961) 
  15. Knox BH, Weigmann HD, Scott MG, Text. Res. J., 45, 203 (1975)
  16. Rigbi Z, Polymer, 19, 1229 (1987) 
  17. Froehling PE, Koenhen DM, Bantjes A, Smolders CA, Polymer, 17, 835 (1976) 
  18. Alexander LE, "X-ray Diffraction Methods in Polymer Science," p. 423, John Wiley & Sons, Inc. (1969)
  19. Hindeleh AM, Johnson DJ, Polymer, 13, 423 (1972) 
  20. 한상규, 한국섬유공학회 1988년도 하계 세미나, p. 156 (1988)
  21. Lawton EL, Cates DM, J. Appl. Polym. Sci., 13, 899 (1969) 
  22. Durning CJ, Rebenield L, Russel WB, Weigmann HD, J. Polym. Sci. B: Polym. Phys., 24, 1341 (1986) 
  23. Desai AB, Wilkes GL, J. Polym. Sci. Polym. Symp., 46, 291 (1974)
  24. Khan AH, Venkatesh GM, J. Polym. Sci. B: Polym. Phys., 19, 589 (1981)