화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.39, 18385-18390, 2005
Enhanced resonant Raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles
Self-assembled secondary ZnO nanoparticles, recognized with the agglomeration of crystalline subcrystals, are successfully synthesized by a simple sol-gel method. TEM images display that one artificial cluster behaves in a single-crystal-like wurtzite structure because subcrystals coagulate as the same crystal orientation. Moreover, from the resonant Raman scattering, the as-grown sample exhibits phonon red shift; meanwhile, the coupling strength between electron and longitudinal optical phonon, determined by the ratio of second to first-order Raman scattering cross sections, diminishes compared with the samples after postannealing at 350 and 500 degrees C. The size dependence of electron-phonon coupling is principally as a result of the Frohlich interaction.