화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.39, 18391-18399, 2005
Site-selective Spectroscopy of the solid-state defect chemistry in erbium-doped barium titanate
Erbium-doped barium titanate crystals were studied by laser-induced fluorescence spectroscopy. Thirteen spectroscopically distinct erbium ion sites were found. The relative concentrations of the different sites changed as a function of the crystal and its preparation and treatment. One major site was present in all crystals. The site distribution was changed either by growing codoped crystals with donor (La3+) and acceptor (Sc3+) ions or by changing the temperature and partial pressure of the oxygen in the annealing atmosphere. Equilibrium calculations were done to simulate the defect distributions that result from the charge compensation of the erbium ions. Comparison with the observed dependence of the site spectral intensities indicated that the erbium enters the lattice on barium sites. We assigned the dominant site to an erbium ion on a barium site that is locally compensated by a barium vacancy, whereas the other lower-intensity sites corresponded to erbium ions that are locally compensated by an electron and a more complex center of an erbium, a barium vacancy, and a hole. The spectra of one sample showed that its defects were different and were characteristic of a sample that had not equilibrated. The new sites in this sample were assigned to erbium entering the lattice on a titanium site, which was then locally compensated by an oxygen vacancy or a hole. Heating equilibrated the sample and changed the erbium to a barium site.