HWAHAK KONGHAK, Vol.40, No.3, 316-323, June, 2002
AEO 비이온 계면활성제/Cosurfactant/물/오일 시스템의 상거동에 관한 연구
Phase Behavior Study in Systems Containing AEO Nonionic Surfactant, Cosurfactant, Water, and Oil
E-mail:
초록
본 연구에서는 AEO계 비이온 계면활성제, 물, D-리모넨의 3성분으로 이루어진 시스템 및 cosurfactant를 첨가할 경우에 대한 상평형 실험을 수행하였다. 비이온 계면활성제, D-리모넨, 물로 이루어진 3성분 시스템에 대한 상평형 실험 결과에 의하면 middle-phase 마이크로에멀젼(microemulsion, μE)이 excess water와 excess oil 상들과 평형을 이루는 3상은 형성되지 않거나 매우 적은 영역에서 형성되었으며, 생성된 단일상의 μE 구조는 전기전도도 측정으로부터 W/O μE으로 판명되었다. 또한 cosurfactant로서 butyl diglycol(BDG), butyl triglycol(BTG)을 첨가한 결과, cosurfactant 첨가량을 증가시킴에 따라 middle-phase μE을 포함한 3상이 생성되는 온도는 감소하였고 3상이 존재하는 온도 범위는 증가하였다. Microemulsion을 사용하여 비극성 오일인 abietic acid, triolein과 윤활유에 대한 가용화 실험을 수행한 결과, W/O μE의 가용화력이 가장 크게 나타났으며, cosurfactant를 첨가할 경우 계면장력이 낮아짐에 따라 가용화도는 증가하였다.
In this study, phase behavior study was performed for ternary systems containing AEO nonionic surfactant, water and D-limonene as a function of surfactant concentration and temperature. The results in the ternary systems showed that a three phase region containing a middle-phase microemulsion(μE) in equilibrium with excess water and excess oil phase was not found or formed over a very limited small region. On the other hand, addition of butyl diglycol(BDG) and butyl triglycol(BTG) as cosurfactants lowered the temperature for the formation of a three phase region including a middle-phase μE and produced a three phase region over a wide range of temperatures. The solubilization experiments for abietic acid, triolein, and lubricant using three different types of μEs showed that the maximum oil removal was achieved with a water-in-oil(W/O) μE in all cases. Addition of a cosurfactant promoted the solubilization mainly due to a decrease in interfacial tension.
Keywords:Phase Behavior;Nonionic Surfactant;Cosurfactant;Microemulsion;Solubilization;Interfacial Tension
- Noh KH, Electronic Parts Components Monthly, 2, 78 (1994)
- Bae JH, Shin MC, Lee TY, Cho KS, J. Korean Inst. Surf. Eng., 32(2), 109 (1999)
- Bae JH, Shin MC, Cho KS, Chem. Ind. Technol., 17(2), 161 (1999)
- Noh KH, Choi DG, Lee YY, Chem. Ind. Technol., 10(5), 328 (1992)
- Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 110, 363 (1986)
- Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987)
- Raney KH, Miller CA, J. Colloid Interface Sci., 119, 539 (1987)
- Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989)
- Lim JC, Miller CA, Yang JH, Colloids Surf., 66, 45 (1992)
- Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
- Lim JC, Miller CA, Prog. Colloid Polym. Sci., 83, 29 (1990)
- Lim JC, Mori F, J. Korean Ind. Eng. Chem., 5(2), 274 (1994)
- Lim JC, Transport Phenomena, 9(1), 17 (1995)
- Lim JC, J. Korean Ind. Eng. Chem., 6(4), 610 (1995)
- Lim JC, J. Korean Ind. Eng. Chem., 8(3), 473 (1997)
- Ko HK, Park BD, Lim JC, J. Korean Ind. Eng. Chem., 11(6), 679 (2000)
- Kielman HS, van Steen PHF, "Surface Active Agents," Society Chemical Industry, London, 191 (1979)
- Miller CA, Neogi P, "Interfacial Phenomena," Marcel Dekker, Inc., 29
- Kunieda H, Shinoda K, J. Disp. Sci. Technol., 3, 233 (1982)
- Kahlweit M, Stray R, Busse G, J. Phys. Chem., 94, 3881 (1990)
- Binks BP, Dong J, Colloids Surf., 132, 289 (1998)
- Swenson R, Inform., 7, 1070 (1996)
- Tuck J, Circuits Manufacturing, Nov. (1988)