화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.3, 316-323, June, 2002
AEO 비이온 계면활성제/Cosurfactant/물/오일 시스템의 상거동에 관한 연구
Phase Behavior Study in Systems Containing AEO Nonionic Surfactant, Cosurfactant, Water, and Oil
E-mail:
초록
본 연구에서는 AEO계 비이온 계면활성제, 물, D-리모넨의 3성분으로 이루어진 시스템 및 cosurfactant를 첨가할 경우에 대한 상평형 실험을 수행하였다. 비이온 계면활성제, D-리모넨, 물로 이루어진 3성분 시스템에 대한 상평형 실험 결과에 의하면 middle-phase 마이크로에멀젼(microemulsion, μE)이 excess water와 excess oil 상들과 평형을 이루는 3상은 형성되지 않거나 매우 적은 영역에서 형성되었으며, 생성된 단일상의 μE 구조는 전기전도도 측정으로부터 W/O μE으로 판명되었다. 또한 cosurfactant로서 butyl diglycol(BDG), butyl triglycol(BTG)을 첨가한 결과, cosurfactant 첨가량을 증가시킴에 따라 middle-phase μE을 포함한 3상이 생성되는 온도는 감소하였고 3상이 존재하는 온도 범위는 증가하였다. Microemulsion을 사용하여 비극성 오일인 abietic acid, triolein과 윤활유에 대한 가용화 실험을 수행한 결과, W/O μE의 가용화력이 가장 크게 나타났으며, cosurfactant를 첨가할 경우 계면장력이 낮아짐에 따라 가용화도는 증가하였다.
In this study, phase behavior study was performed for ternary systems containing AEO nonionic surfactant, water and D-limonene as a function of surfactant concentration and temperature. The results in the ternary systems showed that a three phase region containing a middle-phase microemulsion(μE) in equilibrium with excess water and excess oil phase was not found or formed over a very limited small region. On the other hand, addition of butyl diglycol(BDG) and butyl triglycol(BTG) as cosurfactants lowered the temperature for the formation of a three phase region including a middle-phase μE and produced a three phase region over a wide range of temperatures. The solubilization experiments for abietic acid, triolein, and lubricant using three different types of μEs showed that the maximum oil removal was achieved with a water-in-oil(W/O) μE in all cases. Addition of a cosurfactant promoted the solubilization mainly due to a decrease in interfacial tension.
  1. Noh KH, Electronic Parts Components Monthly, 2, 78 (1994)
  2. Bae JH, Shin MC, Lee TY, Cho KS, J. Korean Inst. Surf. Eng., 32(2), 109 (1999)
  3. Bae JH, Shin MC, Cho KS, Chem. Ind. Technol., 17(2), 161 (1999)
  4. Noh KH, Choi DG, Lee YY, Chem. Ind. Technol., 10(5), 328 (1992)
  5. Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 110, 363 (1986) 
  6. Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987) 
  7. Raney KH, Miller CA, J. Colloid Interface Sci., 119, 539 (1987) 
  8. Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989) 
  9. Lim JC, Miller CA, Yang JH, Colloids Surf., 66, 45 (1992) 
  10. Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
  11. Lim JC, Miller CA, Prog. Colloid Polym. Sci., 83, 29 (1990)
  12. Lim JC, Mori F, J. Korean Ind. Eng. Chem., 5(2), 274 (1994)
  13. Lim JC, Transport Phenomena, 9(1), 17 (1995)
  14. Lim JC, J. Korean Ind. Eng. Chem., 6(4), 610 (1995)
  15. Lim JC, J. Korean Ind. Eng. Chem., 8(3), 473 (1997)
  16. Ko HK, Park BD, Lim JC, J. Korean Ind. Eng. Chem., 11(6), 679 (2000)
  17. Kielman HS, van Steen PHF, "Surface Active Agents," Society Chemical Industry, London, 191 (1979)
  18. Miller CA, Neogi P, "Interfacial Phenomena," Marcel Dekker, Inc., 29
  19. Kunieda H, Shinoda K, J. Disp. Sci. Technol., 3, 233 (1982)
  20. Kahlweit M, Stray R, Busse G, J. Phys. Chem., 94, 3881 (1990) 
  21. Binks BP, Dong J, Colloids Surf., 132, 289 (1998) 
  22. Swenson R, Inform., 7, 1070 (1996)
  23. Tuck J, Circuits Manufacturing, Nov. (1988)