Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.2, 274-284, April, 1994
비이온성 계면활성제, 비극성 오일을 포함한 계에서의 극성 성분의 Phase Inversion Temperature에 대한 영향
Effect of Polar Components on Phase Inversion Temperatures in Systems Containing Nonionic Surfactants and Nonpolar Oils
초록
비이온성 계면활성제 C12E5, 비극성 오일 n-hexadecane, 물을 포함한 계에 oleyl alcohol 혹은 oleic acid 같은 극성 성분을 첨가했을 때의 Phase Inversion Temperature (PIT)를 측정한 결과, 첨가한 극성성분은 친유성 첨가제와 같이 PIT를 급격히 감소시킴을 알 수 있었다. PIT에서의 microemulsion phase의 surfactant film 조성 계산에 의하면 surfactant film에서의 극성 성분/계면활성제 비율이 증가할수록 PIT는 감소하였다. 또한 극성 성분의 첨가는 PIT에서의 microemulsion phase의 부피와 오일, 물의 solubilization parameter에도 큰 영향이 있었다. PIT의 감소에 따라, 예를 들면 극성 성분의 첨가량을 증가시킴에 따라, microemulslon phase의 부피는 급격히 증가하였으며 아울러 오일, 물 모두의 mlcroemulslon phase에 대한 solubilization parameter가 급격히 증가하였다. 본 연구 결과를 비교할 수 있는 세척력 실험결과는 현재 없지만 PIT의 측정은 middle-phase microemulsion phase가 형성되는, 즉 많은 양의 오일을 제거할 수 있는 조건을 예측할 수 있는 유용한 방법임을 알 수 있었다.
Phase Inversion Temperature (PIT) measurements showed that the addition of polar components such as oleyl alcohol and oleic acid to the system comprising n-dodecylpentaoxyethylene monoether (C12E5), nonpolar oil (n-hex-adecane) and water produced large reductions in the PIT. The PIT was lowered as the additive-to-surfactant ratio in the surfactant films in the microemulsion phase was increased. Another dramatic effect of additive was the manner in which it affects the volume of the microemulsion phase at the PIT of the oil and water solubilization characteristics. Microemulsion phase volume was increased rapidly with decreasing PIT, i.e., with increasing amounts of additive in the system. Also with a decrease in PIT, the solubilization parameters of both oil and water in the microemulsion phase were strikingly increased. Even though soil removal data were not available for the conditions where our results obtained, PIT measurement seems a useful starting point for estimating conditions when middle-phase microemulsion formation and its associated high solubilization of oil can be expected.
- Cutler WG, Kissa E, "Detergency: Theory and Technology," Vol. 20, Surfactant Science Series, Marcel Dekker, New York (1987)
- Schwartz AM, "The Physical Chemistry of Detergency," ed. E. Matijevic, p. 195, Surface Colloid Sci, Wiley, New York (1972)
- Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 110, 363 (1986)
- Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987)
- Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989)
- Lim JC, Miller CA, "Surfactant in Solution," eds. K.L. Mittal and D.O. Shah, Vol. 11, 491, Plenum Press, New York and London (1991)
- Raney KH, Miller CA, J. Colloid Interface Sci., 119, 539 (1987)
- Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
- Shinoda K, Friberg S, Adv. Colloid Interface Sci., 4, 281 (1975)
- Kunieda H, Shinoda K, J. Colloid Interface Sci., 107, 107 (1985)
- Kunieda H, Ishikawa N, J. Colloid Interface Sci., 107, 122 (1985)
- Benson HL, Raney KH, J. Am. Oil Chem. Soc., 67(11), 722 (1990)
- Benton WJ, Miller CA, J. Phys. Chem., 87, 4981 (1983)
- Saito H, Shinoda K, J. Colloid Interface Sci., 32, 647 (1970)
- Graciaa A, Lachaise J, Sayous JG, Yiv P, Schechter RS, Wade WH, J. Colloid Interface Sci., 93, 474 (1983)
- Healy RN, Reed RL, Soc. Pet. Eng. J., 491 (1974)
- Lim JC, Miller CA, Langmuir, 7, 2021 (1991)