화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.6, 679-686, October, 2000
NP계 비이온 계면활성제/물/D-Limonene 시스템의 상거동에 관한 연구
Studies on Phase Behavior in systems Containing NP Series Nonionic Surfactant, Water, and D-Limonene
E-mail:
초록
본 연구에서는 polyoxyethylene nonylphenyl ether (NP) 계의 비이온 계면활성제, 물, D-limonene 오일의 3성분 계에 대하여 계면활성제 농도와 온도에 따른 상평형 실험을 수행하였다. 비교적 낮은 온도 조건에서는 O/W microemulsion (μE)과 excess oil의 2상이 형성되었고 높은 온도 조건에서는 excess water+W/O μE의 2상이 형성되었으며, 중간 온도 영역에서는 middle-phase μE이 excess water, excess oil과 평형을 이루는 3상이 형성됨을 알 수 있었다. Middle-phase μE이 동일한 부피의 물과 오일을 포함하는 Phase Inversion Temperature (PIT)는 NP-9의 경우 45 ℃, NP-10의 경우 55 ℃이었다. 3성분계 시스템에 cosurfactant로서 butyl diglycol (BDG), butyl triglycol (BTG)을 각각 첨가한 결과 알코올/계면활성제 비율(A/S)을 증가시킴에 따라 middle-phase μE을 형성하는 온도는 감소하였으며, 3상이 존재하는 온도범위는 증가하였다. 피가용화제로서 abietic acid, triolein, 산업용 윤활유을 사용하여 서로 다른 조성 조건에서 형성된 3가지 형태의 μE에 가용화 시킨 결과 W/O μE의 가용화력이 가장 크게 나타났으며, cosurfactant를 첨가할 경우 계면장력이 낮아짐에 따라 가용화는 증가하였다.
Phase behavior for systems containing polyoxyethylene nonylphenyl ether (NP) nonionic surfactant, water, and D-limonene was studied as a function of surfactant concentration and temperature. The result showed an oil-in-water microemulsion in equilibrium with excess oil phase was formed at low temperatures, whereas a water-in-oil microemulsion in equilibrium with excess water phase was formed at high temperatures. For intermediate temperatures a three phase region containing water, oil, and a middle-phase microemulsion was observed. Phase Inversion Temperatures (PIT), at which a middle-phase microemulsion containing equal volumes of oil and water coexisted with excess oil and water phases, were found to be 45 ℃ and 55 ℃ for NP-9 systems, respectively. Addition of butyl diglycol (BDG) and butyl triglycol (BTG) as cosurfactants lowered the temperature necessary for the formation of a three phase region and produced a middle-phase microemulsion over a wide range of temperatures. the solubilization of abietic acid, triolein, and lubricant using three different types of microemulsions showed that the maximum soil removal was obtained with the water-in-oil microemulsion in all cases. Addition of cosurfactants promoted the solubilization mainly due to a decrease in interfacial tension.
  1. Row KH, Choi DG, Lee YY, Chem. Ind. Technol., 10(5), 328 (1992)
  2. "오존층보호관련법령집," 한국정밀화학공업진흥회 (1992)
  3. 노경호, "CFC 대체물질을 이용한 세정기술," 공기조화 냉동공학, 25, 53 (1996)
  4. Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987) 
  5. Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989) 
  6. Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
  7. Raney KH, Benson H, J. Am. Oil Chem. Soc., 67, 722 (1990)
  8. Miller CA, Raney KH, Colloids Surf. A-Physicochem. Eng. Asp., 74, 169 (1993) 
  9. Lim JC, Miller CA, Prog. Colloid Polym. Sci., 83, 29 (1990)
  10. Kilman HS, van Steen PHF, "Surface Active Agents," Society Chemical Industry, 191, London (1979)
  11. The Manual of the Kruss Spinning Drop Tensiometer (Kruss Ltd.)
  12. Kunieda H, Shinoda K, J. Disp. Sci. Technol., 3, 233 (1982)
  13. Kahlweit M, Stray R, Busse G, J. Phys. Chem., 94, 3881 (1990) 
  14. Miller CA, Neogi P, "Interfacial Phenomena: Equilibrium and Dynamic Effects," MArcel Dekker, New York (1985)
  15. Raney KH, Miller CA, J. Colloid Interface Sci., 119, 539 (1987) 
  16. Lim JC, Miller CA, Yang C, Colloids Surf., 66, 45 (1992) 
  17. Stray R, Jonstromer M, J. Phys. Chem., 36, 4537 (1992) 
  18. Shinoda K, Arai H, J. Phys. Chem., 68, 3485 (1964)
  19. Swenson R, "Terpene Microemulsions with Cationic Surfactants," INFORM, 7, 1070 (1996)
  20. Solans C, Dominguez G, Friberg SE, J. Disp. Sci. Technol., 6, 523 (1985)
  21. Dorfler HD, Dresden AG, Krussmann H, Tenside Surf. Det., 33, 432 (1996)