Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.6, 679-686, October, 2000
NP계 비이온 계면활성제/물/D-Limonene 시스템의 상거동에 관한 연구
Studies on Phase Behavior in systems Containing NP Series Nonionic Surfactant, Water, and D-Limonene
E-mail:
초록
본 연구에서는 polyoxyethylene nonylphenyl ether (NP) 계의 비이온 계면활성제, 물, D-limonene 오일의 3성분 계에 대하여 계면활성제 농도와 온도에 따른 상평형 실험을 수행하였다. 비교적 낮은 온도 조건에서는 O/W microemulsion (μE)과 excess oil의 2상이 형성되었고 높은 온도 조건에서는 excess water+W/O μE의 2상이 형성되었으며, 중간 온도 영역에서는 middle-phase μE이 excess water, excess oil과 평형을 이루는 3상이 형성됨을 알 수 있었다. Middle-phase μE이 동일한 부피의 물과 오일을 포함하는 Phase Inversion Temperature (PIT)는 NP-9의 경우 45 ℃, NP-10의 경우 55 ℃이었다. 3성분계 시스템에 cosurfactant로서 butyl diglycol (BDG), butyl triglycol (BTG)을 각각 첨가한 결과 알코올/계면활성제 비율(A/S)을 증가시킴에 따라 middle-phase μE을 형성하는 온도는 감소하였으며, 3상이 존재하는 온도범위는 증가하였다. 피가용화제로서 abietic acid, triolein, 산업용 윤활유을 사용하여 서로 다른 조성 조건에서 형성된 3가지 형태의 μE에 가용화 시킨 결과 W/O μE의 가용화력이 가장 크게 나타났으며, cosurfactant를 첨가할 경우 계면장력이 낮아짐에 따라 가용화는 증가하였다.
Phase behavior for systems containing polyoxyethylene nonylphenyl ether (NP) nonionic surfactant, water, and D-limonene was studied as a function of surfactant concentration and temperature. The result showed an oil-in-water microemulsion in equilibrium with excess oil phase was formed at low temperatures, whereas a water-in-oil microemulsion in equilibrium with excess water phase was formed at high temperatures. For intermediate temperatures a three phase region containing water, oil, and a middle-phase microemulsion was observed. Phase Inversion Temperatures (PIT), at which a middle-phase microemulsion containing equal volumes of oil and water coexisted with excess oil and water phases, were found to be 45 ℃ and 55 ℃ for NP-9 systems, respectively. Addition of butyl diglycol (BDG) and butyl triglycol (BTG) as cosurfactants lowered the temperature necessary for the formation of a three phase region and produced a middle-phase microemulsion over a wide range of temperatures. the solubilization of abietic acid, triolein, and lubricant using three different types of microemulsions showed that the maximum soil removal was obtained with the water-in-oil microemulsion in all cases. Addition of cosurfactants promoted the solubilization mainly due to a decrease in interfacial tension.
- Row KH, Choi DG, Lee YY, Chem. Ind. Technol., 10(5), 328 (1992)
- "오존층보호관련법령집," 한국정밀화학공업진흥회 (1992)
- 노경호, "CFC 대체물질을 이용한 세정기술," 공기조화 냉동공학, 25, 53 (1996)
- Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987)
- Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989)
- Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
- Raney KH, Benson H, J. Am. Oil Chem. Soc., 67, 722 (1990)
- Miller CA, Raney KH, Colloids Surf. A-Physicochem. Eng. Asp., 74, 169 (1993)
- Lim JC, Miller CA, Prog. Colloid Polym. Sci., 83, 29 (1990)
- Kilman HS, van Steen PHF, "Surface Active Agents," Society Chemical Industry, 191, London (1979)
- The Manual of the Kruss Spinning Drop Tensiometer (Kruss Ltd.)
- Kunieda H, Shinoda K, J. Disp. Sci. Technol., 3, 233 (1982)
- Kahlweit M, Stray R, Busse G, J. Phys. Chem., 94, 3881 (1990)
- Miller CA, Neogi P, "Interfacial Phenomena: Equilibrium and Dynamic Effects," MArcel Dekker, New York (1985)
- Raney KH, Miller CA, J. Colloid Interface Sci., 119, 539 (1987)
- Lim JC, Miller CA, Yang C, Colloids Surf., 66, 45 (1992)
- Stray R, Jonstromer M, J. Phys. Chem., 36, 4537 (1992)
- Shinoda K, Arai H, J. Phys. Chem., 68, 3485 (1964)
- Swenson R, "Terpene Microemulsions with Cationic Surfactants," INFORM, 7, 1070 (1996)
- Solans C, Dominguez G, Friberg SE, J. Disp. Sci. Technol., 6, 523 (1985)
- Dorfler HD, Dresden AG, Krussmann H, Tenside Surf. Det., 33, 432 (1996)