화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.2, 179-185, April, 2002
수용액에서 이산화티타늄, 알루미나, 실리카에 대한 Pb(II)의 흡착 특성
Adsorption Characteristics of Pb(II) on Titanium Dioxide, Alumina, and Silica in Aqueous Solutions
E-mail:
초록
수용액에서 이산화티타늄, 알루미나, 실리카에 대한 납(Pb(+2))이온의 흡착특성을 연구하기 위해 슬러리상 반응기와 고정상 반응기를 이용하여 흡착실험을 실시했다. 이산화티타늄과 실리카에 대한 납이온의 흡착은 Freundlich 흡착등온식으로 나타내는 것이 적합한 반면 알루미나의 경우에는 Langmuir 흡착등온식이 더 적합했다. 이산화티타늄, 알루미나, 실리카는 pH값이 산성에서 염기성 영역으로 이동할수록 흡착량이 증가하다가 pH 6 이상에서는 정체 내지 미소한 변화만이 관찰되었다. 3.5 g/L 농도의 슬러리상 반응기에서 알루미나는 60 min 경과 후에 이산화티타늄, 실리카보다 각각 2배, 3배 흡착이 빠르게 진행되었으며 8.0 mg/cm(2)의 흡착제가 고정된 반응기에서는 알루미나는 60 min 경과 후에 초기농도의 27%가 흡착되어 이산화티타늄(9.6%), 실리카(5%)보다 각각 2.8배, 5.4배 흡착능이 높았다.
Adsorption experiments were performed using slurry and immobilized reactors to investigate the adsorption characteristics of lead ion(II) on titanium dioxide, alumina, and silica in aqueous solutions. Freundlich adsorption isotherm of a lead ion(II) on both titanium dioxide and silica was found to be suitable. In case of alumina, however, Langmuir adsorption isotherm was more suitable than Freundlich isotherm. The adsorption amount on titanium oxide, alumina, and silica increased as the pH value increased; however, it remained constant or stagnant for pH over 6. In the reactor with a slurried particle concentration of 3.5 g/L, the adsorption on alumina, after 60 min, was 2 and 3 times faster than titanium dioxide and silica, respectively. In the reactor with the immobilzed particle amount of 8.0 mg/cm(2), after 60 min, the adsorptivity on alumina was 27%, and this was 2.8 and 5.4 times higher than titanium dioxide(9.6%) and silica(5%), respectively.
  1. 환경청, 유해 화학 물질 해설집(I), 99, 서울 (1986)
  2. Reddy K, Chinthamreddy RS, Waste Manage., 19, 269 (1999) 
  3. Kim MS, Chung JG, J. Colloid Interface Sci., 233(1), 31 (2001) 
  4. Chen YR, Butler JN, Stumn W, Environ. Sci. Technol., 7(4), 327 (1973) 
  5. Loewenstein LM, Charpin F, Mertens PW, J. Electrochem. Soc., 146(2), 719 (1999) 
  6. Ashida M, Sasaki M, Kan H, Yasunaga T, Hachiya K, Inoue T, J. Colloid Interface Sci., 67(2), 219 (1978) 
  7. Hayashi H, Iwasaki T, Onoder Y, Fujiki Y, Chem. Soc. Jpn., 62(11), 3716 (1989) 
  8. Park YJ, Suh MY, Park KK, Choi KS, Jee KY, Kim WH, Anal. Sci. Technol., 13, 433 (2000)
  9. Lee YJ, Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 12(7), 744 (2001)
  10. Kass RL, Kardos JL, Polym. Eng. Sci., 11(1), 11 (1971) 
  11. Kho JG, Jeong AY, Moon YT, Kim DP, J. Korean Ind. Eng. Chem., 11(1), 1 (2000)
  12. Lee YJ, Kim MS, Lee SC, Kim JK, Chung JG, HWAHAK KONGHAK, 39(2), 190 (2001)
  13. Barbier F, Duc G, Petit-Ramel M, Colloids Surf., 166, 153 (2000) 
  14. Nagata N, Kubota LT, Bueno MIMS, Peralta-Zamora PG, J. Colloid Interface Sci., 200(1), 121 (1998) 
  15. Lee SH, Shon JS, Kim IT, Choi HJ, Chung H, Appl. Chem., 4(1), 157 (2000)
  16. Kim DS, Kim MK, Suh JH, J. Korean Environ. Sci. Soc., 7(4), 559 (1998)
  17. Hitachi Co., Ltd., Analysis Guide for Polarized Zeem Atomic Absorption Spectrophotometry, 4, Tokyo, Japan (1987)
  18. Fumikatsu T, Surfactants, 1, 17, Kao Corporation, Tokyo, Japan (1983)
  19. Hong JJ, Yang SM, Lee CH, Kim MS, Colloids Surf., 7, 221 (1996) 
  20. Altin O, Ozbelge HO, Dogu T, J. Colloid Interface Sci., 198(1), 130 (1998) 
  21. Kadirvelu K, Thamaraiselvi K, Namasivayam C, Sep. Purif. Technol., 24, 497 (2001) 
  22. Kim MS, Chung JG, HWAHAK KONGHAK, 38(1), 38 (2000)
  23. Kim MS, Lee SC, Chung JG, J. Korean Ind. Eng. Chem., 12(1), 83 (2001)