화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 306-319, May, 2022
Energy efficient design through structural variations of complex heat-integrated azeotropic distillation of acetone-chloroform-water system
E-mail:
This study presents enhanced energy savings through structural variations of a heat-integrated distillation column for the separation of ternary azeotropic mixture. The conventional sequence has a decanter followed by pressure-swing distillation (PSD) columns for separating acetone-chloroform-water azeotropic mixture. Based on a significant temperature gradient of the PSD, a double annular column was proposed in order that the heat from hot fluid to cold fluid passed through the shared column wall. The heat transferred to the stages near the reboiler could replace the use of external utility, thereby reducing the total energy consumption of the process. For accurate calculations of heat transfer rate, the trays with the double annular structure were simulated by computational fluid dynamics. However, the energy saving was not effective since the structure could not afford to utilize all the heat transferred and additional energy was required to recover. The newly proposed (partial double annular) structure transferred heat from a high-pressure column to two low-pressure columns. It demonstrated 7,807.78 kW of the theoretical energy saving which was almost double of the heat transfer amount. Consequently, the total utility consumption and total annual cost was reduced by 21.79% and 11.32%, respectively, compared to the conventional sequence.
  1. Lim HS, Kim Y, Kang D, Lee M, Jo A, Lee JW, ACS Catal., 11, 12220 (2021)
  2. Kim YK, Bae K, Kim Y, Harbottle D, Lee JW, J. Ind. Eng. Chem., 68, 48 (2018)
  3. Kim K, Kang DW, Yun CY, Choi Y, Lee JW, J. Ind. Eng. Chem., 106, 317 (2022)
  4. Abdelaziz EA, Saidur R, Mekhilef S, Renew. Sust. Energ. Rev., 15, 150 (2011)
  5. Lee S, Lim H, J. Ind. Eng. Chem., 91, 201 (2020)
  6. Park JH, Yang J, Kim D, Gim H, Choi WY, Lee JW, Chem. Eng. J., 427, 130980 (2022)
  7. Matsuda K, Kawazuishi K, Kansha Y, Fushimi C, Nagao M, Kunikiyo H, Masuda F, Tsutsumi A, Energy, 36, 4640 (2011)
  8. Simasatitkul L, Kaewwisetkul P, Wiyaratn W, Assabumrungrat S, Arpornwichanop A, J. Ind. Eng. Chem., 43, 93 (2016)
  9. Shen F, Wang M, Huang L, Qian F, J. Ind. Eng. Chem., 93, 394 (2021)
  10. Linnhoff B, Dunford H, Smith R, Chem. Eng. Sci., 38, 1175 (1983)
  11. Han J, J. Ind. Eng. Chem., 48, 173 (2017)
  12. Cheng HC, Luyben WL, Ind. Eng. Chem. Process Des. Dev., 24, 707 (1985)
  13. Harwardt A, Marquardt W, AIChE J., 58, 3740 (2012)
  14. Jang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58, 8206 (2019)
  15. Yang A, Sun S, Eslamimanesh A, Wei SA, Shen W, Energy, 172, 320 (2019)
  16. Lee H, Seo C, Lee M, Lee JW, AIChE J., 68(1), e17476 (2022)
  17. Wang N, Ye Q, Ren X, Chen L, Zhang H, Fan Y, Cen H, Zhong J, Ind. Eng. Chem. Res., 59, 4742 (2020)
  18. Schmal JP, Van Der Kooi HJ, De Rijke A, Olujic A, Jansens PJ, Chem. Eng. Res. Des., 84, 374 (2006)
  19. Jana AK, Mane A, AIChE J., 57, 3233 (2011)
  20. Díez E, Langston P, Ovejero G, Romero MD, Appl. Therm. Eng., 29, 1216 (2009)
  21. Wang Y, Bu G, Geng X, Zhu Z, Cui P, Liao Z, J. Clean Prod., 218, 212 (2019)
  22. Neto GWF, Carneiro LO, Vasconcelos LGS, Brito KD, Brito R, Sep. Purif. Technol., 275, 119168 (2021)
  23. Li X, Geng X, Cui P, Yang J, Zhu Z, Wang Y, Xu D, Appl. Therm. Eng., 154, 519 (2019)
  24. Yang J, Hou Z, Dai Y, Ma K, Cui P, Wang Y, Zhu Z, Gao J, Chin. J. Chem. Eng., 29, 67 (2021)
  25. Cui Y, Shi X, Guang C, Zhang Z, Wang C, Wang C, Process Saf. Environ. Protect., 122, 1 (2019)
  26. Mah RSH, Nicholas JJ Jr, Wodnik RB, AIChE J., 23, 651 (1977)
  27. Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81, 162 (2003)
  28. Kiss AA, Olujic Z, Chem. Eng. Process., 86, 125 (2014)
  29. Glenchur T, Govind R, Sep. Sci. Technol., 22, 2323 (1987)
  30. Olujic Z, Fakhri F, De Rijke A, De Graauw J, Jansens PJ, J. Chem. Technol. Biotechnol., 78, 241 (2003)
  31. Seo C, Lee H, Lee M, Lee JW, Korean J. Chem. Eng., 39(2), 263 (2022)
  32. Gadalla M, Jiménez L, Olujic Z, Jansens PJ, Comput. Chem. Eng., 31, 1346 (2007)
  33. Bisgaard T, Skogestad S, Abildskov J, Huusom JK, Comput. Chem. Eng., 96, 196 (2017)
  34. Naito K, Nakaiwa M, Huang K, Endo A, Aso K, Nakanishi T, Nakamura T, Noda H, Takamatsu T, Comput. Chem. Eng., 24, 495 (2000)
  35. Lee H, Seo C, Lee M, Lee JW, Appl. Therm. Eng., 195, 117198 (2021)
  36. Lee JW, Hauan S, Westerberg AW, Ind. Eng. Chem. Res., 39(4), 1061 (2000)
  37. Huang K, Nakaiwa M, Wang SJ, Tsutsumi A, AIChE J., 52, 2518 (2006)
  38. Banchero M, Kusumaningtyas RD, Gozzelino G, J. Ind. Eng. Chem., 20, 4242 (2014)
  39. Wang YH, Chien IL, Ind. Eng. Chem. Res., 57, 12884 (2018)
  40. Rodriguez-Donis I, Papp K, Rev E, Lelkes Z, Gerbaud V, Joulia X, AIChE J., 53, 1982 (2007)
  41. Luyben WL, AIChE J., 569, 2088 (2013)
  42. Dimian AC, Omota F, Bliek A, Chem. Eng. Process., 43, 411 (2004)
  43. Widagdo S, Seider WD, AIChE J., 42, 96 (1996)
  44. Petlyuk FB, Danilov RY, Theor. Found. Chem. Eng., 34, 444 (2000)
  45. Luyben WL, Ind. Eng. Chem. Res., 51, 10881 (2012)
  46. Chaniago YD, Lee M, J. Ind. Eng. Chem., 67, 255 (2018)
  47. Huang K, Shan L, Zhu Q, Qian J, Appl. Therm. Eng., 28, 923 (2008)
  48. Fang J, Cheng X, Li Z, Li H, Li C, Chin. J. Chem. Eng., 27, 1272 (2019)
  49. Lucia A, Taylor R, AIChE J., 52, 582 (2006)
  50. Jiang Z, Agrawal R, Chem. Eng. Res. Des., 147, 122 (2019)
  51. Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
  52. Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59, 1966 (2020)
  53. Springer PAM, Buttinger B, Baur R, Krishna R, Ind. Eng. Chem. Res., 41, 1621 (2002)
  54. Knapp JP, Doherty MF, Ind. Eng. Chem. Res., 31, 346 (1992)
  55. Linnhoff B, Flower JR, AIChE J., 24, 633 (1978)
  56. Gadalla M, Olujic Z, Sun L, De Rijke A, Jansens PJ, Chem. Eng. Res. Des., 83, 987 (2005)
  57. Frosi M, Tripodi A, Conte F, Ramis G, Mahinpey N, Rossetti I, J. Ind. Eng. Chem., 104, 272 (2021)
  58. Heggs PJ, Heat Recov. Syst. CHP, 9, 367 (1989)
  59. Lee H, Mo H, Namgung K, Jang W, Lee JW, Ind. Eng. Chem. Res., 59, 14398 (2020)
  60. Jobson M, in: Chapter 6 - Energy Considerations in Distillation, Górak A, Sorensen E (Eds.), Academic Press, Boston, pp. 225-270, 2014.
  61. Douglas AP, Hoadley AFA, Appl. Therm. Eng., 26, 338 (2006)
  62. Gani R, Ruiz CA, Cameron IT, Comput. Chem. Eng., 10, 181 (1986)
  63. Chuang KT, Nandakumar K, in: DISTILLATION | Tray Columns: Design, Wilson ID Ed., Academic Press, Oxford, pp. 1135-1140, 2000.
  64. Nandakumar K, Chuang KT, in: DISTILLATION | Tray Columns: Performance, Wilson ID Ed. Academic Press, Oxford, pp. 1140-1145, 2000.
  65. Noda H, Takamatsu T, Aso K, Nakanishi T, Yoshida K, Nakaiwa M, Mukaida T, Kuratani N, Korean J. Chem. Eng., 17, 593 (2000)
  66. Xu L, Chen D, Yan B, Yuan X, Chin. J. Chem. Eng., 22, 1087 (2014)
  67. Park J, Ahan W, Lee JW, Korean J. Chem. Eng., 38, 1348 (2021)
  68. Katz A, Sankaran V, J. Comput. Phys., 230, 7670 (2011)
  69. Luyben WL, Distillation Design And Control Using Aspen Simulation, John Wiley & Sons, 2013.