화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.91, 201-212, November, 2020
Utilization of CO2 arising from methane steam reforming reaction: Use of CO2 membrane and heterotic reactors
E-mail:
The new reactor design concepts of reforming are proposed as a way of utilization of carbon dioxide (CO2) produced in the methane (CH4) steam reforming: (a) by applying CO2 separation membrane filled with catalysts for dry reforming (mainly discussed), connected MSR and MDR (b) axially and (c) concentrically. The membrane selects CO2 produced in ordinary steam methane reforming and consumed as a reactant for dry reforming inside membrane. This carbon dioxide separation membrane in the reactor of the methane steam reforming is reported recently. Permeated CO2 reacts with methane to produce syngas, hydrogen and carbon monoxide (i.e., dry reforming). Based on the numerical modeling for heat and mass transfer the conversion of methane and carbon dioxide is also considered. In that the conversion of methane is quite low compared to other previous studies, further study is necessary to find a way to improve them. Finally, we briefly suggest two other reactor types consisting of MSR and MDR connected in a series and concentric way (reaction occurs in axial and radial direction, respectively).
  1. Hafizi A, Rahimpour MR, Hassanajili S, Int. J. Hydrog. Energy, 40(46), 16159 (2015)
  2. Alirezaei I, Hafizi A, Rahimpour MR, J. CO2 Util., 23, 105 (2018)
  3. Holladay JD, Hu J, King DL, Wang Y, Catal. Today, 139, 244 (2009)
  4. Dincer I, Int. J. Hydrog. Energy, 37(2), 1954 (2012)
  5. Biesheuvel PM, Kramer GJ, AIChE J., 49(7), 1827 (2003)
  6. Christensen TS, Primdahl LL, Hydrocarb. Process., 73, 39046 (1994)
  7. Pashchenko D, Int. J. Hydrog. Energy, 43(18), 8662 (2018)
  8. Wade JL, Lee C, West AC, Lackner KS, J. Membr. Sci., 369(1-2), 20 (2011)
  9. Kim SM, Armutlulu A, Kierzkowska AM, Hosseini D, Donat F, Muller C, Sustainable Energy Fuels, 4, 713 (2020)
  10. Di Giuliano A, Galluci K, Di Carlo A, Stendardo S, Courson C, Foscolo PU, Can. J. Chem. Eng., 1 (2020).
  11. Arora S, Prasad R, RSC Adv., 6, 108668 (2016)
  12. Usman M, Wan David WMA, Abbas HF, Renew. Sust. Energ. Rev., 45, 710 (2015)
  13. Wehinger GD, Eppinger T, Kraume M, Chem. Eng. Sci., 122, 197 (2015)
  14. Kim CM, Kim JW, Joo SW, Bu Y, Liu M, Gho J, Kim GT, iScience, 9, 278 (2018)
  15. Kim CM, Kim JW, Joo SW, Yang YJ, Shin JY, Liu M, Cho JP, Kim GT, Angew. Chem.-Int. Edit., 58, 9506 (2019)
  16. Shin SW, Shardt O, Warren PB, Stone H, Nat. Commun., 1 (2017).
  17. Song CS, Wei P, Catal. Today, 98(4), 463 (2004)
  18. Farniaei M, Abbasi M, Rahnama H, Rahimpour MR, Shariati A, J. Natural Gas Sci. Eng., 20, 132 (2014)
  19. Rahnama H, Farniaei M, Abbasi M, Rahimpour MR, J. Ind. Eng. Chem., 20(4), 1779 (2014)
  20. Rahimpour MR, Arab Aboosadi Z, Jahamiri AH, J. Natural Gas Sci. Eng., 9, 149 (2012)
  21. Wu KT, Yu CT, Chein RY, Energy Procedia., 105, 4198 (2017)
  22. Song C, Chemical Innovation, 31, 21 (2001)
  23. Nezhad MZ, Rowshanzamir S, Eikani MH, Int. J. Hydrog. Energy, 34(3), 1292 (2009)
  24. Pashchenko D, Int. J. Hydrog. Energy, 42(22), 14926 (2017)
  25. Shahkarami P, Fatemi S, Chem. Eng. Commun., 202(6), 774 (2015)
  26. Meshkani F, Rezaei M, Andache M, J. Ind. Eng. Chem., 20(4), 1251 (2014)
  27. Choudhary VR, Mondal KC, Appl. Energy, 83(9), 1024 (2006)
  28. Al-Nakoua MA, El-Naas MH, Int. J. Hydrog. Energy, 37(9), 7538 (2012)
  29. Koo KY, Lee SH, Jung UH, Roh HS, Yoon WL, Fuel Process. Technol., 119, 151 (2014)
  30. Zhang L, Xu N, Li X, Wang S, Huang K, Harris WH, Chiu WKS, Energy Environ. Sci., 5, 8310 (2012)
  31. Rui ZB, Anderson M, Li YD, Lin YS, J. Membr. Sci., 417, 174 (2012)
  32. Xu N, Li X, Franks MA, Zhao H, Huang K, J. Membr. Sci., 401-402, 190 (2012)
  33. Dong X, Langderos JO, Lin YS, Chem. Commun., 49, 9654 (2013)
  34. Tong J, Zhang L, Han M, Huang K, J. Membr. Sci., 477, 2015 (1)
  35. Patricio SG, Papaioannou E, Zhang G, Metcalfe IS, Marques FMB, J. Membr. Sci., 471, 211 (2014)
  36. Zuo M, Zhuang SJ, Tan XY, Meng B, Yang NT, Liu SM, J. Membr. Sci., 458, 58 (2014)
  37. Zhang P, Tong J, Huang K, ACS Sustainable Chem. Eng., 6, 14162 (2018)
  38. Mutch GA, Qu L, Triantafyllou G, Xing W, Fontaine ML, Metcalfe IS, J. Mater. Chem. A, 7, 12951 (2019)
  39. Ahn H, Kim D, Melgar VMA, Kim J, Othman MR, Nguyen HVP, Han J, Yoon SP, J. Ind. Eng. Chem., 20(5), 3703 (2014)
  40. Zhuang SJ, Li Y, Zuo M, Tan XY, Meng B, Yang NT, Liu SM, Sep. Purif. Technol., 132, 712 (2014)
  41. Norton TT, Lin YS, Solid State Ion., 263, 172 (2014)
  42. Ovalle-Encinia O, Sanchez-Camacho P, Ginzalez-Verela D, Pfeiffer H, ACS Appl. Energy Mater., 2, 1380 (2019)
  43. Xing W, Li ZA, Peters T, Fontaine ML, McCann M, Evans A, Norby T, Bredesen R, Sep. Purif. Technol., 212, 723 (2019)
  44. Zhuang S, Han N, Xing M, Bo M, Liu S, Mater. Lett., 236, 329 (2019)
  45. Ovalle-Encinia O, Pfeiffer H, Ortiz-Landeros J, J. Membr. Sci., 547, 11 (2018)
  46. Dong XL, Wu HC, Lin YS, J. Membr. Sci., 564, 73 (2018)
  47. Ceron MR, Lai LS, Amiri A, Monte M, Katta S, Kelly JC, Worsley MA, Merrill MD, Kim S, Campbell PG, J. Membr. Sci., 567, 191 (2018)
  48. Gude U, Baumann S, Meulenberg WA, Muller M, Sep. Purif. Technol., 215, 378 (2019)
  49. Yu W, Ohmori T, Yamamoto T, Endo A, Nakaiwa A, Itoh N, Chem. Eng. Sci., 62(18-20), 5627 (2007)
  50. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, John Wiley &Sons Inc., New York, 1960.
  51. Helmi A, Encyclopedia of Membranes, Springer, Verlag Berlin Heidelberg, 2016.
  52. Xu J, Froment GF, AIChE J., 35, 88 (1989)
  53. Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293 (1990)
  54. Chen TJ, Yu BL, Zhao YC, Li YD, Lin YS, J. Membr. Sci., 540, 477 (2017)
  55. Lee B, Yun SW, Kim S, Heo J, Kim YT, Lee S, Lim H, Int. J. Hydrog. Energy, 44(4), 2298 (2019)
  56. Lee S, Lim H, Molten salt reforming, ``The power of molten salt in methane dry reforming: a numerical study ”, submitted to the journal.
  57. Lee J, Kim B, Han M, Ind. Eng. Chem. Res., 58(40), 18731 (2019)