화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 188-194, April, 2022
Novel triazine carbonyl polymer with large surface area and its polyethylimine functionalization for CO2 capture
E-mail:
Incorporating high density of nitrogen and amine sites into a proper porous structure is a major consideration for developing CO2 adsorbents. Herein, a novel triazine carbonyl polymer (TCP) was synthesized via one pot Friedel-Crafts reaction and then was post-synthetically functionalized with polyethylimine (PEI) to develop TCP-PEI. The successful syntheses of TCP and TCP-PEI were verified by various characterizations, including FT-IR, XPS, SEM/EDS, and N2 adsorption isotherms at 77 K. The pristine TCP displayed hierarchical pores and a significantly large BET surface area (1940 m2/g), which verified its propriety of being utilized as a support for PEI functionalization. As reasoned, TCP-PEI showed significantly stronger CO2 adsorption than the pristine TCP because of the special interaction between CO2 and PEI. As a result, TCP-PEI exhibited considerably higher CO2/N2 and CO2/CH4 selectivities than TCP. Moreover, it showed almost identical CO2 adsorption isotherms for 5 consecutive cycles. Developing covalent porous polymers with both triazine and carbonyl groups and follow-up PEI functionalization would be an efficient strategy for developing CO2 adsorbents.
  1. Chaffee AL, Knowles GP, Liang Z, Zhang J, Xiao P, Webley PA, Int. J. Greenhouse Gas Control, 1, 11 (2007)
  2. IPCC, in:, Summary for policymakers, Special report on emissions scenarios (SRES): A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press Cambridge, (2000).
  3. Creutzig F, Baiocchi G, Bierkandt R, Pichler PP, Seto KC, Proc. Natl. Acad. Sci., 112, 6283 (2015)
  4. Tuinier MJ, van Sint Annaland M, Kramer GJ, Kuipers JAM, Chem. Eng. Sci., 65, 114 (2010)
  5. Göttlicher G, Pruschek R, Energy Conv. Manag., 38, S173 (1997)
  6. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Prog. Energy Combust. Sci., 38, 215 (2012)
  7. Erlach B, Schmidt M, Tsatsaronis G, Energy, 36, 3804 (2011)
  8. Han Y, Ho WSW, J. Membr. Sci., 628, 119244 (2021)
  9. Lei L, Bai L, Lindbrathen A, Pan F, Zhang X, He X, Chem. Eng. J., 401, 126084 (2020)
  10. Vega F, Baena-Moreno FM, Fernández LMG, Portillo E, Navarrete B, Zhang Z, Appl. Energy, 260, 114313 (2020)
  11. Raganati F, Miccio F, Ammendola P, Energy Fuels, 35, 12845 (2021)
  12. Haider MB, Hussain Z, Kumar R, J. Mol. Liq., 224, 1025 (2016)
  13. Bae YS, Snurr RQ, Angew. Chem.-Int. Edit., 50, 11586 (2011)
  14. Guo LP, Li WC, Qiu B, Ren ZX, Du J, Lu AH, J. Mater. Chem. A, 7, 5402 (2019)
  15. Chen G, Wang F, Wang S, Ji C, Wang W, Dong J, Gao F, Korean J. Chem. Eng.
  16. Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM, Nat. Rev. Mater., 2, 17045 (2017)
  17. Li X, Wang D, He Z, Su F, Zhang N, Xin Y, Wang H, Tian X, Zheng Y, Yao D, Li M, Chem. Eng. J., 417, 129239 (2021)
  18. Vo TK, Vu PV, Nguyen VC, Kim J, Korean J. Chem. Eng., 38, 1676 (2021)
  19. Kumar S, Srivastava R, Koh J, J. CO2 Util., 41, 101251 (2020)
  20. Sun Q, Aguila B, Song Y, Ma S, Acc. Chem. Res., 53, 812 (2020)
  21. Bhanja P, Modak A, Bhaumik A, ChemCatChem, 11, 244 (2019)
  22. Ravi S, Choi Y, Choe JK, Appl. Catal. B: Environ., 271, 118942 (2020)
  23. Dey S, Bhunia A, Esquivel D, Janiak C, J. Mater. Chem. A, 4, 6259 (2016)
  24. Buyukcakir O, Je SH, Talapaneni SN, Kim D, Coskun A, ACS Appl. Mater. Interfaces, 9, 7209 (2017)
  25. Akpe SG, Ahmed I, Puthiaraj P, Yu K, Ahn WS, Microporous Mesoporous Mater., 296, 109979 (2020)
  26. Wang H, Yao CJ, Nie HJ, Wang KZ, Zhong YW, Chen P, Mei S, Zhang Q, J. Mater. Chem. A, 8, 11906 (2020)
  27. Nuhnen A, Janiak C, Dalton Trans., 49, 10295 (2020)
  28. Krishnakumar V, Ramasamy R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 61, 3112 (2005)
  29. Puthiaraj P, Lee YR, Ahn WS, Chem. Eng. J., 319, 65 (2017)
  30. Govindan V, Daniel DJ, Kim HJ, Sankaranarayanan K, Mater. Chem. Phys., 223, 183 (2019)
  31. Liu C, Liu H, Lu C, Tang K, Zhang Y, J. Mater. Sci., 52, 11715 (2017)
  32. Ravi S, Kim SY, Bae YS, J. Hazard. Mater., 424, 127356 (2022)
  33. Ravi S, Puthiaraj P, Ahn WS, ACS Sustain. Chem. Eng., 6, 9324 (2018)
  34. Cychosz KA, Thommes M, Engineering, 4, 559 (2018)
  35. Puthiaraj P, Cho SM, Lee YR, Ahn WS, J. Mater. Chem. A, 3, 6792 (2015)
  36. Bae YS, Farha OK, Hupp JT, Snurr RQ, J. Mater. Chem., 19, 2131 (2009)
  37. Qiao S, Du Z, Yang R, J. Mater. Chem. A, 2, 1877 (2014)
  38. Ding H, Yang Y, Li B, Pan F, Zhu G, Zeller M, Yuan D, Wang C, Chem. Commun., 51, 1976 (2015)
  39. Brown OLI, J. Chem. Educ., 28, 428 (1951)
  40. Bae YS, Mulfort KL, Frost H, Ryan P, Punnathanam S, Broadbelt LJ, Hupp JT, Snurr RQ, Langmuir, 24, 8592 (2008)
  41. Kim TH, Kim SY, Yoon TU, Kim MB, Park W, Han HH, Kong CI, Park CY, Kim JH, Bae YS, Chem. Eng. J., 399, 125717 (2020)
  42. Yoon TU, Kim MJ, Kim AR, Kang JH, Ji D, Bae YS, J. Ind. Eng. Chem., 87, 102 (2020)