화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 195-202, April, 2022
Trace surface fluorination and tungsten-intercalation cooperated dual modification induced photo-activity enhancement of titanium dioxide
E-mail:
General modification that utilizes insoluble tungstic acid or highly toxic hydrofluoric acid to improve charge separation and transfer in TiO2 results in considerable issues such as uneven doping, significant impacts on particle size and morphology, as well as environmental hazards. In the present work, an environmental benign one-pot dual-modification approach was demonstrated that uses soluble sodium tungstate and only trace-level sodium fluoride as replacements. The photoactivity efficiency for decoloration of methylene blue (MB) solution was improved by 33.6% and 119.5% under ultraviolet and visible light, respectively. Meanwhile, the photocurrent density reached an enhancement by 181.2% by this dualmodification. The dual-modification had negligible influence on the crystal structure and the surface area of the TiO2 nanoparticles. Density functional calculation suggested the remarkable improvements of the photocatalysis of TiO2 can be ascribed to the rapid charge separation and transfer owing to the downshift of conduction band from the tungsten doping and localized spatial charge separation from the surface fluorination enabled by the dual-modification approach.
  1. Zheng LX, Teng F, Ye XY, Zheng HJ, Fang XS, Adv. Energy Mater., 10, 1902355 (2020)
  2. Niu P, Wu TT, Wen L, Tan J, Yang YQ, Zheng SJ, et al., Adv. Mater., 30, 1705999 (2018)
  3. Tian ZL, Zhang PF, Qin P, Sun D, Zhang SN, Guo XW, et al., Adv. Energy Mater., 9, 1901287 (2019)
  4. Yang Y, Cui L, Wang B, Qiao R, Chen D, Fan J, et al., ChemPhotoChem, 2, 986 (2018)
  5. Yin QQ, Qiao R, Li ZQ, Zhang XL, Zhu LL, J. Alloy. Compd., 618, 318 (2015)
  6. Huang TZ, Mao S, Yu JM, Wen ZH, Lu GH, Chen JH, RSC Adv., 3, 16657 (2013)
  7. Štengl V, Velická J, Maríková M, Grygar TM, ACS Appl. Mater. Inter., 3, 4014 (2011)
  8. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95, 735 (1995)
  9. Meng AY, Zhang J, Xu DF, Cheng B, Yu JG, Appl. Catal. B: Environ., 198, 286 (2016)
  10. Yang YR, Ye K, Cao DX, Gao P, Qiu M, Liu L, et al., Mater. Inter., 10, 19633 (2018)
  11. Chen JW, Wu GX, Wang TY, Li XD, Li MC, Sang YH, et al., Mater. Inter., 9, 4634 (2017)
  12. Ghosh S, Manna L, Chem. Rev., 118, 7804 (2018)
  13. Long JL, Chang HJ, Gu Q, Xu J, Fan LZ, Wang SC, et al., Energ. Environ. Sci., 7, 973 (2014)
  14. Zhou XS, Peng F, Wang HJ, Yu H, Fang YP, Chem. Commun., 48, 600 (2012)
  15. Yang Y, Liang Y, Wang GZ, Liu LL, Yuan C, Yu T, et al., Mater. Inter., 7, 24902 (2015)
  16. Zhang J, Chen S, Qian LS, Tao X, Yang LX, Wang HB, et al., J. Am. Ceram. Soc., 97, 4005 (2014)
  17. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, et al., Nature, 453, 638 (2008)
  18. National Center for Biotechnology Information, PubChem Database. Hydrofluoric acid, CID = 14917
  19. Xu Y, Tay TF, Cui L, Fan J, Niu C, Chen D, et al., Inorg. Chem., 59, 17631 (2020)
  20. Neville EM, Mattle MJ, Loughrey D, Rajesh B, Rahman M, MacElroy JMD, et al., J. Phys. Chem. C, 116, 16511 (2012)
  21. Kohn W, Sham LJ, Phys. Rev., 140, 1133 (1965)
  22. Blöchl PE, Phys. Rev. B, 50, 17953 (1994)
  23. Kresse G, Joubert D, Phys. Rev. B, 59, 1758 (1999)
  24. Perdew JP, Wang Y, Phys. Rev. B, 45, 13244 (1992)
  25. Kresse G, Hafner J, Phys. Rev. B, 47, 558 (1993)
  26. Kresse G, Furthmüller J, Phys. Rev. B, 54, 11169 (1996)
  27. Kresse G, Furthmüller J, Comput. Mater. Sci., 6, 15 (1996)
  28. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
  29. Grimme S, Antony J, Ehrlich S, Krieg H, J. Chem. Phys., 132, 154104 (2010)
  30. Morgan BJ, Watson GW, Surf. Sci., 601, 5034 (2007)
  31. Yan LK, Chen HN, J. Chem. Theory Comput., 10, 4995 (2014)
  32. Parmar KPS, Ramasamy E, Lee JW, Lee JS, Scr. Mater., 62, 223 (2010)
  33. Wang SY, Soe MT, Guo KT, Zhang XL, Guo ZX, RSC Adv., 5, 41059 (2015)
  34. Chen D, Huang F, Cheng YB, Caruso RA, Adv. Mater., 21, 2206 (2009)
  35. Zhang XL, Huang W, Gu A, Xiang W, Huang F, Guo ZX, et al., J. Mater. Chem. C, 5, 4875 (2017)
  36. Lei YM, Li J, Wang Z, Sun J, Chen F, Liu HW, et al., Nanoscale, 9, 4601 (2017)
  37. Liu Y, Wang HQ, Wu ZB, J. Environ. Sci., 19, 1505 (2007)
  38. Cao L, Chen D, Caruso RA, Angew. Chem.-Int. Edit., 52, 10986 (2013)
  39. Cui L, Xu Y, Fan J, Yuan P, Sun C, Guo ZX, et al., Energ. Mater., 4, 4050 (2021)
  40. Sing KSW, Pure Appl. Chem., 54, 2201 (1982)
  41. Yu JC, Yu JG, Ho W, Jiang ZT, Zhang LZ, Chem. Mater., 14, 3808 (2002)
  42. Zhang X, Liu F, Huang QL, Zhou G, Wang ZS, J. Phys. Chem. C, 115, 12665 (2011)
  43. Cant AM, Huang F, Zhang XL, Chen Y, Cheng YB, Amal R, Nanoscale, 6, 3875 (2014)
  44. Sanches FF, Mallia G, Liborio L, Diebold U, Harrison NM, Phys. Rev. B, 89, 245309 (2014)
  45. Mattioli G, Filippone F, Alippi P, Bonapasta AA, Phys. Rev. B, 78, 241201(R (2008)
  46. Hao L, Kang L, Huang HW, Ye LQ, Han KL, Yang SQ, et al., Adv. Mater., 31, 1900546 (2019)
  47. Mao CY, Zuo F, Hou Y, Bu XH, Feng PY, Angew. Chem.-Int. Edit., 53, 10485 (2014)
  48. Yu JC, Yu J, Ho W, Jiang Z, Zhang L, Chem. Mater., 33, 3808 (2002)
  49. Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S, Electrochem. Commun., 9, 365 (2007)
  50. Kim JH, Nishimura F, Yonezawa S, Takashima M, J. Fluor. Chem., 144, 165 (2012)
  51. Yang SG, Cheng S, Li XY, Gong ZQ, Xie Q, J. Hazard. Mater., 175, 258 (2010)
  52. Boobas S, Jayaprakash J, Ranjith R, Priyadharsan A, Krishnakumar V, Ionics, 25, 1 (2018)
  53. Qamar M, Drmosh Q, Ahmed MI, Qamaruddin M, Yamani ZH, Nanoscale Res. Let., 10, 1 (2015)
  54. Cheng JY, Chen J, Lin W, Liu YD, Kong Y, Appl. Surf. Sci., 332, 573 (2015)
  55. Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Kandjani AE, Bhargava SK, Appl. Surf. Sci., 365, 57 (2016)