Polymer(Korea), Vol.46, No.2, 186-197, March, 2022
압출 및 LFT 펠렛을 사용하여 제조한 탄소섬유/ABS 복합재료의 여러 가지 특성에 미치는 ABS수지 종류와 탄소섬유 함량의 영향
Effects of ABS Resin Type and Carbon Fiber Content on Various Characteristics of Carbon Fiber/ABS Composites Fabricated Using Extruded and LFT Pellets
E-mail:
초록
탄소섬유와 acrylonitrile butadine styrene(ABS)로 구성된 압출펠렛 및 장섬유 열가소성(LFT)펠렛을 각각 사용하여 탄소섬유/ABS 복합재료를 제조하고, 이들의 탄소섬유 길이분포, 파단면, 인장특성, 굴곡특성, 충격강도, 열변형 온도에 미치는 아크릴로니트릴, 부타디엔, 스티렌 조성이 다른 ABS수지 종류와 탄소섬유 함량의 영향을 조사하였다. 압출펠렛보다 LFT펠렛을 사용하여 사출성형공정으로 탄소섬유/ABS 복합재료를 제조하였을 때 복합재료에 탄소섬유가 더 길게 분포하였으며 섬유 종횡비가 크게 나타났다. LFT펠렛 사용이 탄소섬유/ABS 복합재료의 인장특성, 굴곡특성, 충격강도, 열변형온도의 증가에 바람직하였으며, 섬유함량에 따라 점차적으로 증가하였다. 복합재료의 인장특성, 굴곡특성, 열변형온도는 동일한 섬유함량에서 ABS740
Carbon fiber/acrylonitrile butadine styrene (ABS) composites were fabricated using extruded and long fiber thermoplastic (LFT) pellets consisting of carbon fiber and ABS resin, respectively. The effects ABS resin type with different acrylonitrile, butadiene and styrene compositions, and carbon fiber contents on the carbon fiber length distribution, fracture surface, tensile properties, flexural properties, impact strength, and heat deflection temperature of carbon fiber/ABS composites were investigated. Carbon fiber/ABS composites fabricated through injection molding using LFT pellets exhibited a longer fiber length distribution and a higher fiber aspect ratio than those using extruded pellets. Uses of LFT
pellets were preferable to increase the tensile properties, flexural properties, impact strength, and heat deflection temperature of carbon fiber/ABS composite, being gradually increased with the carbon fiber content. The tensile, flexural, and heat deflection temperature properties of composites with the corresponding fiber content were increased in the order of ABS740
Keywords:carbon fiber/acrylonitrile composites;extruded pellet;long fiber thermoplastic pellet;processing;properties
- Soutis C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 412, 171 (2005)
- Jeong N, Cho D, Polym. Korea, 44, 61 (2020)
- Obande W, Ó Brádaigh CM, Ray D, Compos. Pt. B, 215, 108771 (2021)
- Jung S, Cho D, Compos. Pt. B, 187, 107861 (2020)
- Adam H, Mater. Des., 18, 349 (1997)
- Godara SS, Nagar SN, Mater. Today. Proceed., 26, 2601 (2020)
- Ahn S, Yan Y, Jeon HY, Polym. Korea, 44, 109 (2020)
- Tseng HC, Chang RY, Hsu CH, Compos. Sci. Technol., 150, 181 (2017)
- Zhang Q, Zhang J, Wu L, Int’l J. Impact Eng., 122, 374 (2018)
- Thattaiparthasarathy KB, Pillay S, Vaidya HUK, Compos. Pt. A-Appl. Sci. Manuf., 39, 1512 (2008)
- Luo H, Xiong G, Maa C, Li D, Wana Y, Mater. Des., 64, 294 (2014)
- Henning F, Ernst H, Brüssel R, Reinf. Plast., 49, 24 (2005)
- Bondy M, Pinter P, Altenhof W, Mater. Des., 122, 184 (2017)
- Hwang D, Cho D, J. Ind. Eng. Chem., 80, 335 (2019)
- Kumar KS, Ghosh AK, Bhatnagar N, Polym. Compos., 28, 259 (2007)
- Goel A, Chawla KK, Vaidya UK, Chawla N, Koopman M, Mater. Charact., 60, 537 (2009)
- Lee H, Cho D, J. Appl. Polym. Sci., 138, 50674 (2021)
- Yilmazer U, Cansever M, Polym. Compos., 23, 61 (2002)
- Melro AR, Camanho PP, Pinho ST, Compos. Sci. Technol., 68, 2092 (2012)
- Schemme M, Plast. Add. Compound., 10, 38 (2008)
- Holmes M, Reinf. Plast., 63, 262 (2019)
- Moore JD, Composite, 4, 118 (1973)
- Threepopnatkul P, Teppintal W, Sombatsompop N, Fiber. Polym., 12, 1007 (2011)
- Hwang D, Lee SG, Cho D, Polymer, 13, 2298 (2021)
- Li J, Zhang YF, J. Reinf. Plast. Compos., 29, 1727 (2009)
- Lopes BJ, d'Almeida JRM, Mater. Today. Proceed., 8, 719 (2019)
- Yu N, Sun X, Wang Z, Zhang D, Li J, Mater. Des., 195, 108978 (2020)
- Thomason JL, Vlug MA, Compos. Pt. A-Appl. Sci. Manuf., 27, 477 (1996)
- Thomason JL, Vlug MA, Compos. Pt. A-Appl. Sci. Manuf., 28, 227 (1997)
- Kumar KS, Ghosh AK, Bhatnagar N, Polym. Compos., 28, 259 (2007)
- Mathijsen D, Reinf. Plast., 63, 267 (2019)
- Lin MC, Lin JH, Bao L, Compos. Pt. A-Appl. Sci. Manuf., 138, 106022 (2020)
- Lee SM, Han SO, Cho D, Park WH, Lee SG, Polym. Polym. Compos., 13, 479 (2005)