Polymer(Korea), Vol.46, No.2, 179-185, March, 2022
가돌리늄이 도핑된 세륨 옥사이드 나노 입자를 포함한 고분자 전해질 연료전지용 술폰화 폴리(이서 이서 케톤) 복합막 개발
Development of Composite Membranes of Sulfonated Poly(ether ether ketone) and Gadolinium-doped Ceria Nanoparticles for Polymer Electrolyte Membrane Fuel Cells
E-mail:
초록
탄화수소계 전해질 고분자의 취약한 화학적 안정성과 습도조건에 따른 물리적 안정성을 확보하기 위하여, gadolinium(Gd)이 도핑된 세륨 옥사이드(cerium oxide, ceria) 나노 입자를 합성하여 탄화수소계 전해질 고분자 sulfonated poly(ether ether ketone)(SPEEK)에 도입한 복합막을 제조하였다. Gd-doped ceria(GDC)는 기존의 ceria와 비교하여 증가된 산소 공공을 나타내며, 이를 통한 라디칼 억제 기능이 더욱 활성화된다. SPEEK/GDC 복합막은 증가된 bound water로 인해 저가습 수소 이온 전도도가 향상되었으며, 억제된 습윤 팽창률과 증가된 인장강도로 인해 물리적 안정성이 증가되었다. 뿐만 아니라, Fenton’s 평가 결과 향상된 화학적 안정성을 나타내는 것을 확인하였다.
We introduce gadolinium (Gd)-doped cerium oxide (GDC) nanoparticles with hydrocarbon-based proton exchange membrane of sulfonated (ether ether ketone) (SPEEK) for realizing enhanced physical and chemical membrane stabilities. The oxygen vacancy of GDC increases with doping of Gd into ceria, enhancing the chemical stability from the radical degradation. The SPEEK/GDC composite membrane exhibits an increased proton conductivity at low relative humidity conditions due to its higher affinity with water molecules. Moreover, the GDC nanoparticles in the SPEEK matrix enhance not only the mechanical stability with preventing membrane swelling but also the radical resistive chemical stability of the composite membrane.
Keywords:polymer electrolyte membrane;sulfonated (ether ether ketone);gadolinium;cerium oxide;composite membrane
- Carrette L, Friedrich KA, Fuel Cells, 1, 5 (2001)
- Zhang H, Shen PK, Chem. Soc. Rev., 41, 2382 (2012)
- Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104, 4587 (2004)
- Heinzel A, Barragán VM, J. Power Sources, 84, 70 (1999)
- Scott K, Taama WM, J. Power Sources, 79, 43 (1999)
- Siu A, Pivovar B, Horsfall J, Lovell KV, Holdcroft S, J. Polym. Sci. B: Polym. Phys., 44, 2240 (2006)
- Shin DW, Guiver MD, Lee YM, Chem. Rev., 117, 4759 (2017)
- Park CH, Lee CH, Guiver MD, Lee YM, Prog. Polym. Sci., 36, 1443 (2011)
- Lee HR, Lee SH, Hwang BC, Na IC, Lee JH, Oh SJ, Park KP, Korean Chem. Eng. Res., 54, 181 (2016)
- Qiu X, Dong T, Ueda M, Zhang X, Wang L, J. Membr. Sci., 527, 663 (2017)
- Salleh MT, Jaafar J, Mohamed MA, Norddin MNAM, Ismail AF, Othman MHD, Rahman MA, Yusof N, Polym. Degrad. Stabil., 137, 83 (2017)
- Mistri EA, Banerjee S, RSC Adv., 4, 1 (2014)
- Sakamoto M, Nohara S, Miyatake K, Uchida M, Watanabe M, Electrochemistry, 83, 150 (2015)
- Bae I, Oh KH, Yun SH, Kim H, J. Membr. Sci., 542, 52 (2017)
- Oh KH, Bae I, Lee H, Kim H, Kim HT, J. Membr. Sci., 543, 106 (2017)
- Ghosh S, Maity S, Jana T, J. Mater. Chem., 21, 14897 (2011)
- Prabhakaran V, Arges CG, Ramani V, Proc. Natl. Acad. Sci. U. S. A., 109, 1029 (2012)
- Velayutham P, Sahu AK, Parthasarathy SA, Energies, 10, 1 (2017)
- Anjaneya KC, Singh MP, J. Alloy. Compd., 695, 871 (2017)
- Trogadas P, Parrondo J, Ramani V, ACS Appl. Mater. Interfaces, 4, 5098 (2012)
- Lawler R, Cho J, Ham HC, Ju H, Lee SW, Kim JY, Choi JI, Jang SS, J. Phys. Chem. C, 124, 20950 (2020)
- Ahn K, Chung YC, Yoon KJ, Son JW, Kim BK, Lee HW, Lee JH, J. Electroceramics, 32, 72 (2014)
- Shukla D, Negi YS, Uppadhyaya JS, Kumar V, Polym. Rev., 52, 189 (2012)
- Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35, 9349 (2010)
- Kim YS, Dong L, Hickner MA, Glass TE, Webb V, McGrath JE, Macromolecules, 36, 6281 (2003)
- Shin D, Han M, Shul YG, Lee H, Bae B, J. Power Sources, 378, 468 (2018)
- Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG, J. Membr. Sci., 556, 12 (2018)
- Park SH, Yoo HI, Solid State Ion., 176, 1485 (2005)