화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.1, 109-115, January, 2020
말레산 무수물 그래프트 폴리프로필렌이 재생 탄소섬유 보강 폴리프로필렌에 미치는 영향
Effect of Maleic Anhydride-grafted Polypropylene on Recycled Carbon Fiber Reinforced Polypropylene
E-mail:
초록
플라스틱 기반 폐기물의 문제가 증가되면서 탄소섬유 복합재료(CFRPs)는 폐순환 재료 수명 주기를 달성할 필요가 있다. 본 연구는 폴리프로필렌(PP)을 사용한 재생 탄소섬유 복합재료(rCFRPs)의 잠재성을 연구하는 것을 목표로 한다. PP는 관능기가 없기 때문에 기계적 물성 향상을 위해 말레산 무수물이 그래프트된 폴리프로필렌(MAPP)을 커플링제로 사용하였다. rCFRP는 재생 탄소섬유(rCF) 습식부직포와 매트릭스 필름을 포개어 압축성형으로 제조하였다. 충분한 산소 관능기가 rCF 표면에 존재함을 확인했으며 그 관능기들은 말레산 무수물(MA)과 rCF 표면의 공유결합에 의한 기계적 물성 향상에 기여하였다. rCFRP의 인장특성은 2 wt%의 MAPP 첨가만으로도 극적인 향상을 보였지만 5 wt%까지 MAPP의 함량에 대한 효과는 미미하였다
As the problem of plastic based material waste is increasing, carbon fiber reinforced plastics (CFRPs) need to achieve closed life cycle. This study aims to investigate the potential for recycled carbon fiber reinforced plastics (rCFRPs) with polypropylene (PP). To improve mechanical properties of rCFRP, maleic anhydride grafted polypropylene (MAPP) was used as a coupling agent due to absence of functional group in PP. The rCFRPs were prepared by compression molding after stacking of recycled carbon fiber (rCF) wet-laid nonwovens and matrix films. The sufficient oxygen functional groups observed on rCF surface and they contributed to improve mechanical properties by covalent bond between maleic anhydride (MA) group and rCF surface. The tensile properties of the rCFRP with 2 wt% MAPP were dramatically increased compared to that without MAPP. However, the effect of MAPP content until 5 wt% on the tensile properties was slight.
  1. Baker DA, Rials TG, J. Appl. Polym. Sci., 130(2), 713 (2013)
  2. Ishikawa T, Amaoka K, Masubuchi Y, Yamamoto T, Yamanaka A, Arai M, Takahashi J, Compos. Sci. Technol., 155, 221 (2018)
  3. Pickering SJ, Composites Part A, 37, 1206 (2006)
  4. Pimenta S, Pinho ST, Waste Manage., 31, 378 (2011)
  5. Oliveux G, Dandy LO, Leeke GA, Prog. Mater. Sci., 72, 61 (2015)
  6. Meng F, McKechnie J, Turner T, Wong KH, Pickering SJ, Environ. Sci. Technol., 51, 12727 (2017)
  7. Greco A, Maffezzoli A, Buccoliero G, Caretto F, Cornacchia F, J. Compos. Mater., 47, 369 (2013)
  8. Lee H, Ohsawa I, Takahashi J, Appl. Surf. Sci., 328, 241 (2015)
  9. Szpieg M, Giannadakis K, Asp LE, J. Compos. Mater., 46, 1633 (2012)
  10. Wong KH, Mohammed DS, Pickering SJ, Brooks R, Compos. Sci. Technol., 72, 835 (2012)
  11. Luo G, Li W, Liang W, Liu G, Ma Y, Niu Y, Li G, Compos. Part-B Eng., 111, 190 (2017)
  12. Arbelaiz A, Fernandez B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I, Compos. Sci. Technol., 65, 1582 (2005)
  13. Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM, Ind. Eng. Chem. Res., 34(5), 1889 (1995)
  14. Qiu W, Endo T, Hirotsu T, Eur. Polym. J., 42, 1059 (2006)
  15. Rana AK, Mandal A, Bandyopadhyay S, Compos. Sci. Technol., 63, 801 (2003)
  16. Acha BA, Reboredo MM, Marcovich NE, Polym. Int., 55, 1104 (2006)
  17. Giorgini L, Benelli T, Mazzocchetti L, Leonardi C, Zattini G, Minak G, Dolcini E, Cavazzoni M, Montanari I, Tosi C, Polym. Compos., 36, 1084 (2015)
  18. Jiang L, Ulven CA, Gutschmidt D, Anderson M, Balo S, Lee M, Vigness J, J. Appl. Polym. Sci., 132, 42658 (2015)
  19. Meyer LO, Schulte K, Grove-Nielsen E, J. Compos. Mater., 43, 1121 (2009)
  20. Jiang GZ, Pickering SJ, J. Mater. Sci., 51(4), 1949 (2016)
  21. Desimoni E, Casella GI, Morone A, Salvi AM, Surf. Interface Anal., 15, 627 (1990)
  22. Lee WH, Lee JG, Reucroft PJ, Appl. Surf. Sci., 171(1-2), 136 (2001)
  23. Wang Y, Viswanathan H, Audi AA, Sherwood PM, Chem. Mater., 12, 1100 (2000)
  24. Cho KW, Li FK, Choi J, Polymer, 40(7), 1719 (1999)
  25. Seo Y, Kim J, Kim KU, Kim YC, Polymer, 41(7), 2639 (2000)
  26. Deblieck RAC, van Beek DJM, Remerie K, Ward IM, Polymer, 52(14), 2979 (2011)