화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 187-194, November, 2021
Anti-coking freeze-dried NiMgAl catalysts for dry and steam reforming of methane
E-mail:,
Finding supported nickel catalysts with high activity and stability is yet a challenging aim for industrial applications. In this work, we synthesized a surface defect-promoted Ni catalyst supported on Mg/Al hydrotalcite via a freeze-dried method instead of calcination. This approach leads to the increase in oxygen vacancies, which is attributed to the high dispersion of active sites after adding samarium. X-ray diffraction (XRD) measurements demonstrate a homogeneous layered double hydroxide (LDH) structure without the formation of any oxides. High-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy images (FE-SEM) illustrated that the samarium-promoted NiMgAl catalyst possesses a scaffold structure with surface defects and oxygen vacancies compared to the unpromoted NiMgAl catalyst which confirmed by X-ray photoelectron spectroscopy (XPS). Moreover, the impact of the samarium incorporation on the physicochemical features of NiMgAl catalysts was investigated for catalytic activity in dry and steam reforming of methane at 700 °C. NiMgAl-Sm catalyst showed the highest conversion of CH4 (72%) and stability without any carbon formation during 20 h of time on stream in dry reforming process. because the strong metal.support interaction inhibits the sintering of nanocatalysts at 700 °C and the scaffold structure increases the mass transportation of feedstock and products.
  1. Lee SG, Lim HW, J. Ind. Eng. Chem., 87, 110 (2020)
  2. Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z, ACS Catal., 9, 9072 (2019)
  3. Zhang L, Lian J, Li C, Peng C, Liu W, Xu X, Fang X, Wang Z, Wang X, Peng H, Microporous Mesoporous Mater., 266, 189 (2018)
  4. Liu W, Li L, Zhang X, Wang Z, Wang X, Peng H, J. CO2 Util., 27, 297 (2018)
  5. Chu B, Zhang N, Zhai X, Chen X, Cheng Y, J. Energy Chem., 23, 593 (2014)
  6. Micheli F, Sciarra M, Courson C, Gallucci K, J. Energy Chem., 26, 1014 (2017)
  7. Jabbour K, J. Energy Chem., 48, 54 (2020)
  8. Lee SG, Lim HK, J. Ind. Eng. Chem., 91, 201 (2020)
  9. Shahed GV, Taherian Z, Khataee A, Keshkani F, Orooji Y, J. Ind. Eng. Chem., 86, 73 (2020)
  10. Theofanidis SA, Galvita VV, Poelman H, Marin GB, ACS Catal., 5, 3028 (2015)
  11. Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W, ACS Appl. Mater. Interfaces, 12, 35022 (2020)
  12. Chaichi A, Sadrnezhaad SK, Malekjafarian M, Int. J. Hydrog. Energy, 43(3), 1319 (2018)
  13. Zhang JC, Ge BH, Liu TF, Yang YZ, Li B, Li WZ, ACS Catal., 10, 783 (2019)
  14. Gharahshiran VS, Yousefpour M, Int. J. Hydrog. Energy, 43(14), 7020 (2018)
  15. Jiang C, Loisel E, Cullen DA, Dorman JA, Dooley KM, J. Catal., 393, 215 (2021)
  16. Lou Y, Steib M, Zhang Q, Tiefenbacher K, Horvath A, Jentys A, Liu Y, Lercher JA, J. Catal., 356, 147 (2017)
  17. Egelske BT, Keels JM, Monnier JR, Regalbuto JR, J. Catal., 381, 374 (2020)
  18. Gharahshiran VS, Yousefpour M, Amini V, Mol. Catal., 484 (2020)
  19. Safavinia B, Wang Y, Jiang C, Roman C, Darapaneni P, Larriviere J, Cullen DA, Dooley KM, Dorman JA, ACS Catal., 10, 4070 (2020)
  20. Santamaria L, Lopez G, Arregi A, Artetxe M, amutio M, Buibao J, Olazar, J. Ind. Eng. Chem., 91, 167 (2020)
  21. Adamu S, Razzak SA, Hossain MM, J. Ind. Eng. Chem., 64, 467 (2018)
  22. Taherian Z, Khataee A, Orooji Y, J. Energy Inst., 97, 100 (2021)
  23. Taherian Z, Gharahshiran VS, Fazlikhani F, Yousefpour M, Int. J. Hydrog. Energy, 46, 7254 (2021)
  24. Lin XY, Li RL, Lu MM, Chen CQ, Li DL, Zhan YY, Jiang LL, Fuel, 162, 271 (2015)
  25. Das S, Thakur S, Bag A, Gupta MS, Mondal P, Bordoloi A, J. Catal., 330, 46 (2015)
  26. Khajenoori M, Rezaei M, Meshkani F, J. Ind. Eng. Chem., 21, 717 (2015)
  27. Yu W, Deng N, Cheng K, Yan J, Cheng B, Kang W, J. Energy Chem. (2020).
  28. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN, Renew. Sust. Energ. Rev., 82, 2570 (2018)
  29. Bruna F, Pereira MG, Polizeli MDLT, Valim JOB, ACS Appl. Mater. Interfaces, 7, 18832 (2015)
  30. Debek R, Motak M, Galvez ME, Grzybek T, Da Costa P, Appl. Catal. B: Environ., 223, 36 (2018)
  31. Kim S, Jeon SG, Lee KB, ACS Appl. Mater. Interfaces, 8, 5763 (2016)
  32. Niu J, Liland SE, Yang J, Rout KR, Ran J, Chen D, Chem. Eng. J., 377 (2019)
  33. Debek R, Motak M, Duraczyska D, Launay F, Galvez ME, Grzybek T, Da Costa P, Catal. Sci. Technol., 6, 6705 (2016)
  34. Abdelsadek Z, Holgado JP, Halliche D, Caballero A, Cherifi O, Gonzalez-Cortes S, Masset PJ, Catal. Lett., 1 (2021).
  35. Zhan Y, Li D, Nishida K, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Clay Sci., 45, 147 (2009)
  36. Chen DY, Zou JH, Li WX, Xu B, Li QY, Yang GW, Wang J, Ding YM, Zhang Y, Shen XF, Inorg. Chem. Commun., 40, 35 (2014)
  37. Sutradhar N, Sinhamahapatra A, Pahari S, Jayachandran M, Subramanian B, Bajaj HC, Panda AB, J. Phys. Chem. C, 115, 7628 (2011)
  38. Taherian Z, Yousefpour M, Tajally M, Khoshandam B, Microporous Mesoporous Mater., 251, 9 (2017)
  39. Huang J, Yan Y, Saqline S, Liu W, Liu B, Appl. Catal. B: Environ., 275 (2020)
  40. Jing C, Zhang Q, Liu X, Chen Y, Wang X, Xia L, Zeng H, Wang D, Zhang W, Dong F, RSC Adv., 9, 9604 (2019)
  41. Bao, Lu Y, Yang Q, Jason S, Li Y, Yu F, American Society of Agricultural and Biological Engineers, (2015).
  42. Zhang M, Yu F, Li J, Chen K, Yao Y, Li P, Zhu M, Shi Y, Wang Q, Guo X, Catalysts, 8, 363 (2018)
  43. Daza CE, Cabrera CR, Moreno S, Molina R, Appl. Catal. A: Gen., 378(2), 125 (2010)
  44. Zanjani NG, Kamran-Pirzaman A, Khalajzadeh M, Clean Technol. Environ. Policy, 22, 1173 (2020)
  45. Takehira K, Shishido T, Wang P, Kosaka T, Takaki K, J. Catal., 221(1), 43 (2004)
  46. Naseem S, Gevers B, Boldt R, Labuschagne FJW, Leuteritz A, RSC Adv., 9, 3030 (2019)
  47. Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
  48. Swirk K, Rønning M, Motak M, Grzybek T, Da Costa P, Int. J. Hydrogen Energy (2020).
  49. Zhang G, Xiu S, Wei Y, Zhang Q, Cai K, Cryst. Eng. Commun., 20, 4364 (2018)
  50. Du X, Zhang D, Gao R, Huang L, Shi L, Zhang J, Chem. Commun., 49, 6770 (2013)
  51. Liu Q, Yang H, Dong H, Zhang W, Bian B, He Q, Yang J, Meng X, Tian Z, Zhao G, New J. Chem., 42, 13096 (2018)
  52. Sun LZ, Tan YS, Zhang QD, Xie HJ, Song FE, Han YZ, Int. J. Hydrog. Energy, 38(4), 1892 (2013)
  53. Hu YH, Ruckenstein E, ChemInform, 35, no-no (2004).
  54. Liu Q, Gao JJ, Gu FN, Lu XP, Liu YJ, Li HF, Zhong ZY, Liu B, Xu GW, Su FB, J. Catal., 326, 127 (2015)
  55. Yang R, Li X, Wu J, Zhang X, Zhang Z, J. Phys. Chem. C, 113, 17787 (2009)
  56. Bepari S, Basu S, Pradhan NC, Dalai AK, Catal. Today, 291, 47 (2017)
  57. Liu F, Zhao L, Wang H, Bai X, Liu Y, Int. J. Hydrog. Energy, 39(20), 10454 (2014)
  58. He T, Chen D, Jiao X, Wang Y, Duan Y, Chem. Mater., 17, 4023 (2005)
  59. Nguyen TD, Mrabet D, Do TO, J. Phys. Chem. C, 112, 15226 (2008)
  60. Biswas S, Naskar H, Pradhan S, Chen Y, Wang Y, Bandyopadhyay R, Pramanik P, New J. Chem., 44, 1921 (2020)
  61. Sarma D, Hegde M, Rao CN, J. Chem. Soc.-Faraday Trans., 2, 77 (1981)
  62. Mason M, Lee ST, Apai G, Davis R, Shirley D, Franciosi A, Weaver J, Phys. Rev. Lett., 47, 730 (1981)
  63. Jiang Z, Zhou W, Tan D, Zhai R, Bao X, Surf. Sci., 565, 269 (2004)
  64. Palmer C, Upham DC, Smart S, Gordon MJ, Metiu H, McFarland EW, Nat. Catal., 3, 83 (2020)
  65. Rostrup-Nielsen J, Sehested J, Nørskov JK, in Hydrogen and Synthesis gas by Steam-and CO2 reforming, (2002).
  66. Jalali R, Nematollahi B, Rezaei M, Baghalha M, Int. J. Hydrog. Energy, 44(21), 10427 (2019)
  67. Shahed et al., Journal of Industrial and Engineering Chemistry, 86, 73 (2020).