화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.4, 525-532, July, 2021
누액방지형 하이드로젤형 흡습제의 제조와 특성 연구
Preparation and Characterization on Leak-Proof Hydrogel-Based Desiccants
E-mail:,
초록
해상무역의 발달로 다양한 제품들의 해상운송이 증가하고 있다. 수분에 민감한 제품들은 이 과정에서 많은 양의 습기에 노출되어 고장이 발생한다. 흡습제는 이러한 습기를 제거하기 위해 사용되며, 흡습제로 조해성 이온염을 많이 사용하고 있다. 하지만, 이들은 습기를 흡습하여 물을 형성하는데 이러한 물이 누액될 경우 제품의 부식을 일으켜 금전적인 손실을 초래한다. 본 연구에서는 수분을 흡습하면서도 누액 문제를 해결하기 위해서 조해성이 우수한 calcium chloride(CaCl2) 또는 magnesium chloride(MgCl2)의 이온염에 치환도가 서로 다른 carboxymethyl cellulose(CMC) 고분자를 도입하여 하이드로젤형 흡습제를 제조하였다. 하이드로젤형 흡습제는 물리적 가교를 통해서 이온염의 함량이 많을수록, 조해성이 우수할수록, CMC의 치환도가 낮을수록 더 높은 수분 흡습률을 보였지만, 점도는 감소되는 경향을 보였다. 또한 이러한 특성들은 이온염에 따라 변화하는 pH에 영향을 받은 것으로 알 수 있었다.
Maritime transport of various products has been increased with developing seaborne trade. Moisture-sensitive products are exposed to a large amount of moisture during transport and broken down. Ionic salts having deliquescence often used as a desiccant for moisture removal. Although ionic salts produce water by moisture absorption, the leak of ionic salt-based aqueous solution seriously disrupts the products, resulting in financial loss. In this study, hydrogel-based desiccants showing simultaneous leak-proof and high moisture absorption ratio were prepared by calcium chloride (CaCl2) or magnesium chloride (MgCl2) exhibiting deliquescence with carboxymethyl cellulose (CMC) having different degree of substitution. Moisture absorption ratio of the hydrogel-based desiccants depended on the kind and the content of the deliquescent ionic salts and the substitution degree of CMC because they decide to make the physical crosslinking. However, viscosity of the hydrogel-based desiccants inversely decreased with increasing moisture absorption ratio. Also, pH changes depend on the sort of the deliquescent ionic salts and strongly affects the moisture absorption ratio and viscosity.
  1. Ahn YG, Lee MK, J. Ind. Bus. Econ., 31, 1925 (2018)
  2. Ahn YG, Ko BW, Korea Trade Rev., 43, 159 (2018)
  3. Romanov AN, J. Commun. Technol. Electron., 53, 304 (2008)
  4. Inoue T, Miyazaki M, Kamitani M, Kano J, Saito F, Adv. Powder Technol., 16(1), 27 (2005)
  5. Lee JH, Wee JH, J. Kor. Soc. Environ. Eng., 35, 547 (2013)
  6. Xu S, Fan L, Zeng M, Wang J, Liu Q, Colloids Surf. A: Physicochem. Eng. Asp., 371, 59 (2010)
  7. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP, J. Power Sources, 288, 368 (2015)
  8. Jo SY, Lim YM, Youn MH, Gwon HJ, Park JS, Nho YC, Shin H, Polym. Korea, 33(6), 551 (2009)
  9. Jung JH, Kim J, Lee KY, Polym. Korea, 37(4), 478 (2013)
  10. Barbucci R, Magnani A, Consumi M, Macromolecules, 33(20), 7475 (2000)
  11. Fekete T, Borsa J, Takacs E, Wojnarovits L, Chem. Cent. J., 11, 1 (2017)
  12. Che Nan NF, Zainuddin N, Ahmad M, Pertanika J. Sci. & Technol., 27, 489 2019.
  13. Sung Y, Kim TH, Lee B, Clean Technol., 22(4), 258 (2016)
  14. Thakur S, Arotiba OA, Polym. Bull., 75(10), 4587 (2018)
  15. Dogsa I, Tomsic M, Orehek J, Benigar E, Jamnik A, Stopar D, Carbohydr. Polym., 111, 492 (2014)
  16. Sultana S, Islam M, Dafader N, Haque M, Nagasawa N, Tamada M, Int. J. Chem. Sci., 10, 627 (2012)
  17. Chai MN, Isa MIN, J. Cryst. Proc. Technol., 3, 1 (2013)
  18. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grondahl L, Biomacromolecules, 8(8), 2533 (2007)
  19. Dengshan B, Mingjie C, Haiying W, Jufang W, Chuanfu L, Runcang S, Carbohydr. Polym., 110, 113 (2014)
  20. Lim YH, Adelodun AA, Jo YM, J. Korean Soc. Atmos. Environ., 30, 68 (2014)
  21. Zhu Q, Barney CW, Erk KA, Mater. Struct., 48, 2261 (2015)
  22. Hong YH, Appl. Chem. Eng., 21(2), 169 (2010)
  23. Steinhauser G, J. Clean Prod., 16, 833 (2008)
  24. Wach RA, Mitomo H, Yoshii F, Kume T, J. Appl. Polym. Sci., 81(12), 3030 (2001)
  25. Alarcon PO, Sossa K, Contreras D, Urrutia H, Nocker A, Magnes. Res., 27, 57 (2014)