화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.6, 551-554, November, 2009
동결/융해와 방사선 가교법에 의한 PVA/CMC 수화젤의 제조 및 특성 평가
Fabrication and Characterization of PVA/CMC Hydrogels by Freezing-Thawing Technique and Gamma-Ray Irradiation
E-mail:
초록
Poly(vinyl alcohol)(PVA)와 carboxymethyl cellulose sodium salt(CMC)는 우수한 생체적합성 및 수용성으로 인하여 생체의학 분야에서 주목하는 재료 중 하나이다. 본 연구에서는 PVA와 CMC를 동결/융해 과정과 감마선 조사에 의하여 인공연골로서 사용 가능한 수화젤을 제조하였다. 수화젤 제조시 PVA/CMC의 농도는 PVA는 7 wt%, CMC는 4 wt%로 고정시켰으며, 동결/융해 과정은 2회 반복하였으며, 감마선은 30 kGy 조사하였다. 방사선 조사 전과후의 겔화율은 눈에 띄는 차이는 보이지 않았으나 팽윤도는 조사 후에 감소하였으며, 겔강도는 증가하였다. CCK-8 assay에 의하여 세포독성이 없는 것으로 확인되었다. 제조된 PVA/CMC 수화젤은 체내에 삽입되는 인공연골 재료로서 사용가능성을 제시하였다.
Poly(vinyl alcohol)(PVA) and carboxymethyl cellulose (CMC) have received increasing attention in biomedical and biochemical applications because of their properties such as being water-soluble and biocompatible. In this study, a PVA/CMC hydrogel applicable to artificial cartilage was prepared by a freezing-thawing technique and a gamma-ray irradiation. The solid concentration of PVA was 7 wt% and the concentration of CMC was 4 wt%. The freezing/thawing process was repeated twice and the dose of gamma-ray irradiated was 30 kGy. Results of gelation before and after gamma-ray irradiation were similar, but the swelling degree decreased and compressive strength increased. The cytotoxicity was investigated with CCK-8 assay.
  1. Kim SW, Lee SP, Lee JW, artificial cartilage, KISTI, Seoul (2004)
  2. Lee SH, Ceramist, 7, 47 (2004)
  3. Silver FH, Doillon C, Biocompatibility. Interactions of Biological and Implantable Materials, VCH Publ. Inc., New York (1989)
  4. Park KR, Nho YC, Polym.(Korea), 25(5), 728 (2001)
  5. Shin Y, Kim KS, Kim B, Polym.(Korea), 32(5), 421 (2008)
  6. Rosiak JM, J. Control. Reasase, 31, 9 (1994)
  7. Burczak K, Fujisato T, Hatada M, Ikada Y, Biomaterials, 15, 231 (1994)
  8. Hirai T, Okinaka T, Amemiya Y, Kobayashi K, Hirai M, Hayashi S, Angew. Makromol. Chem., 240, 213 (1996)
  9. Liu PF, Zhai ML, Li JQ, Peng J, Wu JL, Radiat. Phys. Chem., 63, 525 (2002)
  10. Wach RA, Mitomo H, Nagasawa N, Yoshii F, Radiat. Phys. Chem., 68, 771 (2003)
  11. Santa-Comba A, Pereira A, Lemos R, Santos D, Amarante J, Pinto M, Tavares P, Bahia F, J. Biomed. Mater. Res., 55, 396 (2001)
  12. Xiao C, Gao Y, J. Appl. Polym. Sci., 107, 1568 (2007)
  13. Pines E, Rins W, Macromolecules, 6, 888 (1973)
  14. Hassan CM, Ward JH, Peppas NA, Polymer, 41(18), 6729 (2000)
  15. Lim YM, Lee JH, Noh YC, Son TI, J. Radiat. Ind., 1, 53 (2007)
  16. KAERI/RR-2327/2002 (2002)
  17. ASTM, ASTM D 2765-01.
  18. Choi EK, Kim HI, Park KR, Nho YC, J. Korean Ind. Eng. Chem., 14(4), 505 (2003)
  19. Zou C, Shen Z, J. Pharmacol. Toxicol. Methods, 56, 58 (2007)
  20. ISO/EN 10993-5.
  21. Clough RL, Shalaby SW, Radiation Effects on Polymers, Maple Press. Inc., New York, PA, p271 (1990)
  22. Tranquilan-Aranilla C, Yoshii R, Dela Rosa AM, Makuuchi K, Radiat. Phys. Chem., 55, 127 (1999)
  23. Miranda LF, LugaAo AB, Machado LDB, Ramanathan LV, Radiat. Phys. Chem., 55, 709 (1999)
  24. Park KR, Kim DP, Nho YC, J. Korean Ind. Eng. Chem., 12(7), 718 (2001)
  25. Abou Taleb MF, Abd El-Mohdy NL, Abd El-Rehim HA, J. Hazard. Mater., in press (2009)