화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 371-375, April, 2021
Mesoporous Rh nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
E-mail:,
In the face of hydrogen society, considerable efforts to develop highly active and stable electrocatalysts for hydrogen evolution reaction (HER) have been undertaken to realize sustainable hydrogen production using water splitting. A rational design of mesoporous structure is considered as a promising approach for efficient electrochemical reaction. Herein, we demonstrate the mesoporous rhodium nanoparticles (MRNs) synthesized by simple chemical reduction using polymeric micelle template for the high electrocatalytic performance of HER in an acidic media. Due to the large accessible surface area and abundant low-coordinated atoms on the concave pore surface, our MRNs exhibits the lower overpotential of 29.4 mV at a current density of 10 mA/cm2 for HER, compared to 33.8 mV of Rh black. The MRNs also achieves a small Tafel slope of 30.9 mV/dec, enhanced exchange current density and excellent stability in long-term operation. These kinetic and stability properties are attributed to the uniform mesoporous morphology and the robust structure of the MRNs.
  1. Turner JA, Science, 305, 972 (2004)
  2. You B, Sun Y, Accounts Chem. Res., 51, 1571 (2018)
  3. Zegers P, J. Power Sources, 154(2), 497 (2006)
  4. Grimes CA, et al., The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer, New York, 2007.
  5. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR, Energy Environ. Sci., 12, 463 (2019)
  6. Maggio G, Nicita A, Squadrito G, Int. J. Hydrog. Energy, 44(23), 11371 (2019)
  7. Gupta RB, Hydrogen Fuel: Production, Transport, and Storage, CRC Press, New York, 2008.
  8. White CM, Steeper RR, Lutz AE, Int. J. Hydrog. Energy, 31(10), 1292 (2006)
  9. Sørensen B, Spazzafumo G, Hydrogen and Fuel Cells: Emerging Technologies and Applications, Academic Press, London, 2018.
  10. Dutta S, J. Ind. Eng. Chem., 20(4), 1148 (2014)
  11. Dincer I, Acar C, Int. J. Hydrog. Energy, 40(34), 11094 (2015)
  12. Nikolaidis P, Poullikkas A, Renew. Sust. Energ. Rev., 67, 597 (2017)
  13. Vincent I, Bessarabov D, Renew. Sust. Energ. Rev., 81, 1690 (2018)
  14. Landman A, Dotan H, Shter GE, Wullenkord M, Houaijia A, Maljusch A, Grader GS, Rothschild A, Nat. Mater., 16(6), 646 (2017)
  15. Yan Y, He T, Zhao B, Qi K, Liu H, Xia BY, J. Mater. Chem. A, 6, 15905 (2018)
  16. Babar PT, Lokhande AC, Gang MG, Pawar BS, Pawar SM, Kim JH, J. Ind. Eng. Chem., 60, 493 (2018)
  17. Zhou W, Jia J, Lu J, Yang L, Hou D, Li G, Chen S, Nano Energy, 28, 29 (2016)
  18. Han X, Yu Y, Huang Y, Liu D, Zhang B, ACS Catal., 7, 6464. (2017)
  19. Yang Y, Xia BY, Zhao B, Wang X, J. Mater. Chem. A, 4, 17587 (2016)
  20. Kuang Y, Kenney MJ, Meng Y, Huan WH, Liu Y, Huang JE, et al., PNAS, 116, 6624 (2019)
  21. Kim JH, Kim JY, Kim HK, Kim JY, Ahn SH, J. Ind. Eng. Chem., 79, 255 (2019)
  22. Lim AY, Kim HJ, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Sung YE, Jang JH, Park HS, J. Ind. Eng. Chem., 76, 410 (2019)
  23. Horvat-Radosevic V, Kvastek K, Electrochim. Acta, 48(4), 311 (2002)
  24. Pu Z, Amiinu IS, He D, Wang MM, Li G, Mu S, Nanoscale, 10, 12407 (2018)
  25. Lu J, Tang Z, Luo L, Yin S, Shen PK, Tsiakaras P, Appl. Catal. B: Environ., 255, 117737 (2019)
  26. Dang Q, Liao F, Sun YY, Zhang SS, Huang H, Shen W, Kang ZH, Shi YD, Shao MW, Electrochim. Acta, 299, 828 (2019)
  27. Zhang N, Shao Q, Pi Y, Guo J, Huang X, Chem. Mater., 29, 5009 (2017)
  28. Zhang W, Zhang X, Chen L, Dai J, Ding Y, Ji L, Zhao J, Yan M, Yang F, Chang CR, Guo S, ACS Catal., 8, 8092 (2018)
  29. Tzorbatzoglou F, Brouzgou A, Tsiakaras P, Appl. Catal. B: Environ., 174-175, 203 (2015)
  30. Kundu MK, Mishra R, Bhowmik T, Barman S, J. Mater. Chem. A, 6, 23531 (2018)
  31. Shen W, Ge L, Sun Y, Liao F, Xu L, Dang Q, Kang Z, Shao M, ACS Appl. Mater. Interfaces, 10, 33153 (2018)
  32. MEng Y, Qu X, Li K, Yang Y, Wang Y, Wu Z, J. Phys. Chem. C, 123, 5176 (2019)
  33. Moghimian N, Sam M, Bhiladvala RB, Mater. Lett., 113, 152 (2013)
  34. Xie S, Liu XY, Xia Y, Nano Res., 8, 82 (2015)
  35. Zou H, Jin B, Wang R, Wu Y, Yang H, Qiu S, J. Mater. Chem. A, 6, 24166 (2018)
  36. Yin J, Wang J, Ma Y, Yu J, Zhou J, Fan Z, ACS Materials Lett., 3, 121 (2021)
  37. Jiang B, Li C, Dag O, Abe H, Takei T, Imai T, Hossain MSA, Islam MT, Wood K, Henzie J, Yamauchi Y, Nat. Commun., 8, 15581 (2017)
  38. Arandiyan H, Kani K, Wang Y, Jiang B, Kim J, Yoshino M, Rezaei M, Rowan AE, Dai H, Yamauchi Y, ACS Appl. Mater. Interfaces, 10, 24963 (2018)
  39. Jiang B, Li C, Tang J, Takei T, Kim JH, Ide Y, Henzie J, Tominaka S, Yamauchi Y, Angew. Chem.-Int. Edit., 55, 10037 (2016)
  40. Abe Y, Kato K, Kawamura M, Sasaki K, Surf. Sci. Spectra, 8, 117 (2001)
  41. Kibis LS, Stadnichenko AI, Koscheev SV, Zaikovskii VI, Boronin AI, J. Phys. Chem. C, 120, 19142 (2016)
  42. Peuckert M, Surf. Sci., 141, 500 (1984)
  43. Wengsieh Z, Gronsky R, Bell AT, J. Catal., 170(1), 62 (1997)
  44. Tolia AA, Smiley RJ, Delgass WN, Takoudis CG, Weaver MJ, J. Catal., 150(1), 56 (1994)
  45. Marot L, Mathys D, Temmerman GD, Oelhafen P, Surf. Sci., 602, 3375 (2008)