Journal of Industrial and Engineering Chemistry, Vol.96, 376-381, April, 2021
The effects of polyvinylpyrrolidone molecular weight on defect-free filling of through-glass vias (TGVs)
E-mail:, ,
Through-glass vias (TGVs) have been extensively researched due to the unique properties of glass, including low dielectric constant, high transparency, high mechanical, thermal and chemical resistance, and low cost. The TGVs are typically filled with Cu by electrodeposition to make electrical connections in high-performance electronics with 3D integration. The Cu electrodeposition process employed to fill the through-holes is similar to the one used for printed circuit boards (PCBs), and defect-free Cu can be achieved with a butterfly filling mechanism. This study introduces the defect-free Cu filling of TGVs using polyvinylpyrrolidone (PVP) as a leveler. The effects of PVP molecular weight on the formation of suppression layers on the Cu surface was examined by electrochemical analyses. It was found that the smaller PVP (10,000 g/mol) was beneficial, forming a more compact suppression layer. In contrast, the layer of larger PVPs (360,000 g/mol) contained a large number of defects where the accelerator could adsorb, resulting in conformal electrodeposition. As a result, the PVP with a molecular weight of 10,000 g/ mol led to defect-free butterfly filling at TGVs with increasing the filling performance by 20% compared to the larger PVP.
- Vereecken PM, Binstead RA, Deligianni H, Andricacos PC, IBM J. Res. Dev., 49, 3 (2005)
- Hai NTM, Broekmann P, ChemElectroChem, 2, 1096 (2015)
- Dinh VQ, Kondo K, Hirato T, J. Electrochem. Soc., 167, 062504 (2020)
- Sung M, Yoon Y, Hong J, Kim MJ, Kim JJ, J. Electrochem. Soc., 166(13), D546 (2019)
- Hayase M, Nagao M, J. Electrochem. Soc., 160(12), D3216 (2013)
- Kim HC, Kim MJ, Kim JJ, J. Electrochem. Soc., 165(3), D91 (2018)
- Kim MJ, Kim HC, Kim JJ, J. Electrochem. Soc., 163(8), D434 (2016)
- Kim MJ, Seo Y, Kim HC, Lee Y, Choe S, Kim YG, Cho SK, Kim JJ, Electrochim. Acta, 163, 174 (2015)
- Kim MJ, Seo Y, Oh JH, Lee Y, Kim HC, Kim YG, Kim JJ, J. Electrochem. Soc., 163(5), D185 (2016)
- Tomie M, Akita T, Irita M, Hayase M, J. Electrochem. Soc., 167, 082513 (2020)
- Dinh VQ, Kondo K, Hoang VH, Hirato T, J. Electrochem. Soc., 166(12), D505 (2019)
- Huang SM, Liu CW, Dow WP, J. Electrochem. Soc., 159(3), D135 (2012)
- Dow WP, Yen MY, Liao SZ, Chiu YD, Huang HC, Electrochim. Acta, 53(28), 8228 (2008)
- Lee MH, Lee Y, Sung M, Cho SK, Kim YG, Kim JJ, J. Electrochem. Soc., 167, 102505 (2020)
- Dow WP, Li CC, Lin MW, Su GW, Huang CC, J. Electrochem. Soc., 156(8), D314 (2009)
- Tang M, zhang S, Qiang Y, Chen S, Luo L, Gao J, Feng L, Qin Z, RSC Adv., 7, 40342 (2017)
- Ren SJ, Lei ZW, Wang ZL, J. Electrochem. Soc., 162(10), D509 (2015)
- Lee MH, Lee Y, Oh JH, Kim YG, Cho SK, Kim JJ, J. Electrochem. Soc., 164(14), D1051 (2017)
- Zheng L, He W, Zhu K, Wang C, Wang SX, Hong Y, Chen YM, Zhou GY, Miao H, Zhou JQ, Electrochim. Acta, 283, 560 (2018)
- Li J, Zhou G, Hong Y, Wang C, He W, Wang S, Chen Y, Wen Z, Wang Q, ACS Omega, 5, 4868 (2020)
- Wang X, Kang K, Xu J, Li J, Lv J, Zhao M, Wang L, Dyes Pigment., 181, 108594 (2020)
- Josell D, Moffat TP, J. Electrochem. Soc., 165(2), D23 (2018)
- Moffat TP, Josell D, J. Electrochem. Soc., 159(4), D208 (2012)
- Braun TM, Josell D, Silva M, Kildon J, Moffat TP, J. Electrochem. Soc., 166(1), D3259 (2019)
- Josell D, Menk LA, Hollowell AE, Blain M, Moffat TP, J. Electrochem. Soc., 166(1), D3254 (2019)
- Braun TM, Josell D, John J, Moffa TP, J. Electrochem. Soc., 167, 013510 (2019)
- Bozzini B, D'Urzo L, Mele C, Electrochim. Acta, 52(14), 4767 (2007)
- Dow WP, Huang HS, Yen MY, Huang HC, J. Electrochem. Soc., 152(6), C425 (2005)
- Li Z, Tan B, Shi M, Luo J, Hao Z, He J, Yang G, Cui C, J. Electrochem. Soc., 167, 042508 (2020)
- Luo JY, Li Z, Shi MH, Chen JJ, Hao ZF, Hez J, J. Electrochem. Soc., 166(4), D104 (2019)
- Kelly JJ, Tian CY, West AC, J. Electrochem. Soc., 146(7), 2540 (1999)
- Takeuchi M, Kondo K, Kuri H, Bunya M, Okamoto N, Saito T, J. Electrochem. Soc., 159(4), D230 (2012)
- Liao CH, Zhang ST, Chen SJ, Qiang YJ, Liu G, Tang MX, Tan BC, Fu DL, Xu Y, J. Electroanal. Chem., 827, 151 (2018)
- Wang C, Zhang JQ, Yang PX, An MZ, Electrochim. Acta, 92, 356 (2013)
- Yoon Y, Kim H, Kim TY, Lee KH, Choe S, Kim JJ, Electrochim. Acta, 339, 135916 (2020)
- Kim SK, Josell D, Moffat TP, J. Electrochem. Soc., 153(9), C616 (2006)
- Willey MJ, Reid J, West AC, Electrochem. Solid-State Lett., 10, D38 (2007)
- Hai NTM, Furrer J, Stricker F, Huynh TMT, Gjuroski I, Luedi N, Brunner T, Weiss F, Fluegel A, Arnold M, Chang I, Mayer D, Broekmann P, J. Electrochem. Soc., 160(12), D3116 (2013)
- Huang TB, Sharma H, Manepalli R, Kandanur S, Sundaram V, Tummala RR, J. Electron. Mater., 47, 7401 (2018)
- Moffat TP, Wheeler D, Kim SK, Josell D, Electrochim. Acta, 53(1), 145 (2007)
- Moffat TP, Wheeler D, Edelstein MD, Josell D, IBM J. Res. Dev., 49, 19 (2005)
- Tang J, Zhu QS, Zhang Y, Zhang X, Guo JD, Shang JK, ECS Electrochem. Lett., 4, D28 (2015)
- Zhang YZ, Sun YN, Wang Y, Cheng P, Wang H, Ding GF, J. Electrochem. Soc., 163(2), D24 (2016)
- Zhu QS, Toda A, Zhang Y, Itoh T, Maeda R, J. Electrochem. Soc., 161(5), D263 (2014)
- Zhang YZ, Ding GF, Cheng P, Wang H, J. Electrochem. Soc., 162(1), D62 (2015)
- Josell D, Moffat TP, Wheeler D, J. Electrochem. Soc., 154(4), D208 (2007)
- Wang F, Zhao Z, Nie N, Wang F, Zhu W, Sci. Rep., 7, 46639 (2017)