Journal of Industrial and Engineering Chemistry, Vol.76, 410-418, August, 2019
A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis
E-mail:,
Polymer electrolyte membrane water electrolysis has been proposed to address production of high purity hydrogen for storage of excess renewable energy. Among them, alkaline electrolyte membrane based water electrolysis (AEMWE) has an advantage in the aspect of material costs, e.g. from non-noble catalysts and membrane, but suffers from lower performance compared to proton exchange membrane based water electrolysis (PEMWE). However, there are fewer researches on single cell MEA and operation study compared to material research to enhance AEMWE performance. Here, we analyze the effect of the cell construction and operation factors, i.e MEA pressing, torque of cell assembly, electrolyte pre-feed methods, and operation temperature, to obtain high performance in AEMWE single cell operation. 97.5 % current improves at 1.8 V by applying optimized torque. 94 % decrease of ohmic resistance are achieved from electrolyte pre-feeding. 50 mA cm-2 of current density is enhanced at 0.591 V of overvoltage per 10 °C temperature increasedue to higherionic conductivityandreaction kinetics.Thesefactorssignificantlyaffect internal factors such as not only material property during operation but also, catalysts structure and contact in MEA, leading 4.3 times progress of current density from 0.242 to 1.045 A cm-2 at 1.8 Vcell.
Keywords:Anion exchange membrane water;electrolysis;membrane electrode assembly;electrolyzer operation;electrocatalysis
- Kintisch E, Science, 324, 323 (2009)
- Obama B, Science, 355(6321), 126 (2017)
- KERR RA, Science, 222, 1107 (1983)
- Edwards PP, Kuznetsov VL, David WIF, Phil, Trans. R. Soc. A, 365, 1043 (2007)
- Dutta S, J. Ind. Eng. Chem., 20(4), 1148 (2014)
- Garche J, Jorissen L, Electrochem. Soc. Interface Summer, 24, 39 (2015)
- Holladay JD, Hu J, King DL, Wang Y, Catalysis Today, 139, 244 (2009)
- Demirbas MF, Energy Sources, 28, 245 (2006)
- Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renewable Energy, 85, 1371 (2016)
- Pletcher D, Li XH, Int. J. Hydrog. Energy, 36(23), 15089 (2011)
- Leng YJ, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang CY, J. Am. Chem. Soc., 134(22), 9054 (2012)
- Babic U, Suermann M, Buehi FN, Gubler L, Schmidt TJ, J. Electrochem. Soc., 164(4), F387 (2017)
- Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
- Cho MK, Park HY, Choe S, Yoo SJ, Kim JY, Kim HJ, Henkensmeier D, Lee SY, Sung YE, Park HS, Jang JH, J. Power Sources, 347, 283 (2017)
- Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G, Nano Today, 11(5), 601 (2016)
- Gong M, Wang DY, Chen CC, Hwang BJ, Dai H, Nano Res., 9, 28 (2016)
- Babar PT, Lokhande AC, Jo E, Pawar BS, Gang MG, Pawar SM, Kim JH, J. Ind. Eng. Chem., 70, 116 (2019)
- Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF, J. Mater. Chem. A, 4, 3068 (2016)
- Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I, ChemElectroChem, 1, 2075 (2014)
- Babar PT, Lokhande AC, Gang MG, Pawar BS, Pawar SM, Kim JH, J. Ind. Eng. Chem., 60, 493 (2018)
- Choi WS, Jang MJ, Park YS, Lee KH, Lee JY, Seo MH, Choi SM, ACS Appl. Mater. Interfaces, 10, 38663 (2018)
- Lee JY, Lee HY, Lim BK, J. Ind. Eng. Chem., 58, 100 (2018)
- Kim HK, Kim JH, Ahn SH, J. Ind. Eng. Chem., 72, 273 (2019)
- Zeng L, Zhao TS, Nano Energy, 11, 110 (2015)
- Duan QJ, Ge SH, Wang CY, J. Power Sources, 243, 773 (2013)
- Yanagi H, Fukuta K, ECS Trans., 16, 257 (2008)
- Aili D, Wright AG, Kraglund MR, Jankova K, Holdcroftb S, Jensen JO, J. Mater. Chem. A, 5, 5055 (2017)
- Chen D, Hickner MA, ACS Appl. Mater. Interfaces, 4, 5775 (2012)
- Ren X, Price SC, Jackson AC, Pomerantz N, Beyer FL, ACS Appl. Mater. Interfaces, 6, 13330 (2014)
- Konovalova A, Kim H, Kim S, Lim A, Park HS, Kraglund MR, Aili D, Jang JH, Kim HJ, Henkensmeier D, J. Membr. Sci., 564, 653 (2018)
- Marinkas A, Struzynska-Piron I, Lee Y, Lim A, Park HS, Jang JH, Kim HJ, Kim J, Maljusch A, Conradi O, Henkensmeier D, Polymer, 145, 242 (2018)
- Vijayakumar V, Nam SY, J. Ind. Eng. Chem., 70, 70 (2019)
- Xu W, Scott K, Int. J. Hydrog. Energy, 35(21), 12029 (2010)
- Park JE, Kang SY, Oh SH, Kim JK, Lim MS, Ahn CY, Cho YH, Sung YE, Electrochimica Acta, 295, 99 (2019)
- An L, Zhao TS, Chai ZH, Tan P, Zeng L, Int. J. Hydrog. Energy, 39(35), 19869 (2014)
- Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M, Angew. Chem.-Int. Edit., 53, 1378 (2014)
- Ito H, Kawaguchi N, Someya S, Munakata T, Miyazaki N, Ishida M, Nakano A, Int. J. Hydrog. Energy, 43(36), 17030 (2018)
- Chaiburi C, Hacker V, Energy Procedia, 229, 2017
- Jeong G, Kim M, Han J, Kim HJ, Shul YG, Cho E, J. Power Sources, 323, 142 (2016)
- Pandiarajan T, Berchmans LJ, Ravichandran S, RSC Adv., 5, 34100 (2015)
- Seetharaman S, Balaji R, Ramya K, Dhathathreyan KS, Velan M, Int. J. Hydrog. Energy, 38(35), 14934 (2013)
- Xiao L, Zhang S, Pan J, Yang C, He M, Zhuang L, Lu J, Energy Environ. Sci., 5, 7869 (2012)
- Wu X, Scott K, Int. J. Hydrog. Energy, 38(8), 3123 (2013)
- Wu X, Scott K, J. Power Sources, 214, 124 (2012)
- Faraj M, Boccia M, Miller H, Martini F, Borsacchi S, Geppi M, Pucci A, Int. J. Hydrog. Energy, 37(20), 14992 (2012)
- Parrondo J, Arges CG, Niedzwiecki M, Anderson EB, Ayers KE, RSC Adv., 4, 9875 (2014)
- Parrondo J, George M, Capuano C, Ayers KE, Ramani V, J. Mater. Chem. A, 3, 10819 (2015)
- Chen C, Tse YLS, Lindberg GE, Knight C, Voth GA, J. Am. Chem. Soc., 138(3), 991 (2016)
- Maurya S, Shin SH, Kim Y, Moon SH, RSC Adv., 5, 37206 (2015)
- Luo HZ, Vaivars G, Agboola B, Mu SC, Mathe M, Solid State Ion., 208, 52 (2012)
- Puthiyapura VK, Pasupathi S, Su HN, Liu XT, Pollet B, Scott K, Int. J. Hydrog. Energy, 39(5), 1905 (2014)
- deBethune AJ, Licht TS, Swendeman N, J. Electrochem. Soc., 106, 616 (1959)
- Gileadi E, Kirowa-Eisner E, Electrochem. Acta., 51, 6003 (2006)