Clean Technology, Vol.26, No.1, 30-38, March, 2020
활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성
Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon
E-mail:
초록
입상 활성탄에 대한 Acid Red 66의 흡착 등온선과 동력학적, 열역학적 파라미터에 대해 염료의 초기농도, 접촉시간, 온도를 흡착변수로 하여 조사하였다. 흡착평형자료는 Langmuir, Freundlich, Temkin, Redlich-Peterson 및 Temkin 등온흡착식에 적용하였다. Freundlich 등온흡착식이 가장 잘 맞았으며, 계산된 Freundlich 분리계수 값(1/n = 0.125 ~ 0.232)으로부터 입상 활성탄이 Acid Red 66을 효과적으로 처리할 수 있다는 것을 알 수 있었다. Temkin의 흡착열관련상수(BT = 2.147 ~ 2.562 J mol-1)는 이 공정이 물리흡착임을 나타냈다. 동력학적 실험으로부터 흡착공정은 유사 이차 반응속도식에 잘 맞았다. 입자 내 확 산식에 대한 결과는 경계층 확산을 나타내는 첫 번째 직선의 기울기보다 입자내 확산을 나타내는 두 번째 직선의 기울기가 작게 나타나서 입자 내 확산이 율속단계인 것을 확인하였다. 열역학 실험으로부터 활성화 에너지는 35.23 kJ mol-1로 흡착공 정이 물리흡착공임을 확인하였다. Gibbs 자유에너지 변화(ΔG-0.548 ~ -7.802 kJ mol-1)와 엔탈피 변화(ΔH+109.112 kJ mol-1)은 각각 흡착공정이 자발적 공정 및 흡열과정임을 나타내었다. 등량흡착열은 흡착된 염료분자들의 측면상호작용 을 나타내는 표면부하량이 증가함에 따라 증가하였다.
The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin’s constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (Δ? G-0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH+109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.
- Aboua KN, Yobouet YA, Benjamin K, Gone DL, Trokourey A, J. Environ. Manage., 156(1), 10 (2016)
- Kousha M, Daneshvar E, Dopeikar H, Taghavi D, Bhatnagar A, Chem. Eng. J., 179, 158 (2012)
- Ferreira GMD, Ferreira GMD, et al., J. Coll. Surf. A, Physicochem. Eng. Aspec., 529, 531 (2017)
- Grag VK, Amita M, Gupta R, Dyes Pigment., 63, 243 (2004)
- Shin J, Suh SS, Choi MK, Clean. Technol., 20(1), 22-27 (2014).
- Lee JJ, Clean. Technol., 20(3), 290 (2014)
- A, UI, Abdulraheem G, Bala S, Muhammad S, Abdullahi M, Int. Biodeterior. Biodegrad., 102(11), 265 (2015)
- Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y, Data Brief., 21, 1008 (2018)
- Metivier-Pignon H, Faur-Brasquet C, Le Cloirec P, Sep. Purif. Technol., 31(1), 3 (2003)
- Goswami M, Phukan P, J. Environ. Chem. Eng., 5(4), 3508 (2017)
- Kansal SK, Ali AH, Kapoor S, Desalination, 259(1-3), 147 (2010)
- Wikidipia, “Biebrich scarlet,” (2019).
- National Institute of Food and Drug Safety Evaluation, “Anthraquinone,” (2019).
- Lee JJ, Clean Technol., 20, 56-62 (2019).
- Lee JJ, Appl. Chem. Eng., 28(2), 206 (2017)
- Belbachir I, Makhoukhi B, J. Taiwan Inst. Chem. Eng., 75, 105 (2017)
- de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
- Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
- Sivakumar P, Palanisamy PN, Intl. J. Chem. Technol. Res., 1, 502 (2009)
- Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y, J. Ind. Eng. Chem., 20(4), 2193 (2014)
- Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
- Lee EH, Lee KY, Kim KW, Kim HJ, Kim IS, Chung DY, Moon JK, Choi JW, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223 (2016)
- Onal Y, Basar CA, Eren D, Onalzdemir CS, Depci T, J. Hazard. Mater., B128, 150 (2006)
- Gopinathan R, Bhowal A, Garlapati C, J. Chem. Thermodyn., 107, 182 (2017)
- Pan M, Lin X, Vie J, Huang X, Royal Soc. Chem., 7, 4492 (2017)
- Sulak MT, Demirbas E, Kobya M, Biores. Technol., 98, 2590 (2007)
- Anirudhan TS, Radhakrishnan PG, J. Chem. Thermodyn., 40(4), 702 (2008)
- Ahsaine HA, Zbair M, Anfar Z, Nacir Y, El haouti R, El Alem N, Ezahri M, Mater. Today Chem., 8, 121 (2018)