화학공학소재연구정보센터
Clean Technology, Vol.26, No.1, 39-54, March, 2020
지하수수질측정망 자료를 활용한 경남지역 지하수 수질: 배경수질전용측정망에 의한 심도.지질별 특성
Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network
E-mail:
초록
본 연구에서는 경상남도 지역의 지하수 수질 특성을 파악하고 효과적인 지하수 관리를 위한 기초적인 자료를 제공하기 위하여 지하수수질측정망 자료를 이용하여 심도와 지질별로 분석하였다. 토양지하수정보시스템의 배경수질전용측정망을 통하여 2013년부터 2017년까지 5년 동안의 503 세트 자료를 수집하였다. 총대장균군과 몇 극소량 존재하는 항목 즉 수은, 페놀 등을 제외한 수질매개변수는 심도와 지질에 따라 유의하거나 아주 유의하였다. 심도가 깊어짐에 따라 pH와 전기전도 도는 증가하였고, 수온, 용존산소 산화물 환원 전위, 비소, 총대장균군 그리고 탁도는 감소하였고, 먹는물 수질 부적합율은 낮아졌다. 양이온과 음이온의 농도 합은 쇄설성퇴적암에서 가장 높았고 변성암에서 가장 낮았다. 먹는물 수질 부적합율은 변성암에서 가장 높았고 쇄설성퇴적암, 미고결퇴적물, 그리고 관입화성암 순이었다. 상층관정과 쇄설성퇴적암의 일부 지점에서 외부 오염물질에 의한 오염의 가능성을 의미하는 Na-Cl 수질특성을 보였다.
This study analyzed the groundwater quality according to the depth and geological features in Gyeongsangnam-do area using groundwater quality monitoring network data to grasp the groundwater quality characteristics and to provide basic data for policy making on efficient groundwater management. Five hundred and three data sets were acquired from background water quality exclusive monitoring network in soil groundwater information system for five years (2013 ~ 2017). Except for the total coliforms and tracer items such as mercury, phenol, and others, the parameters of water quality were significant or very significant, depending on depth and geological features. As the depth got deeper, the average value of pH and electrical conductivity increased; water temperature, dissolved oxygen, oxide reduction potential, arsenic, total coliforms, and turbidity decreased; and total unfit rate for drinking water standards was lower. It was found that the sum of the positive and negative ions was the highest in the clastic sedimentary rock and the lowest in metamorphic rock. The total unfit rate for drinking water standards was the highest for metamorphic rocks, followed by clastic sedimentary rock and unconsolidated sediments and, finally, intrusive igneous rock with the lowest penetration. The Na-Cl water type, which indicated the possibility of contamination by external pollutants, appeared only at some points in shallow depths and in clastic sedimentary rocks.
  1. Kim JH, Ryoo RN, Lee JS, Song DS, Lee YJ, Jeon HB, J. Korean Soc. Environ. Eng., 38(10), 566 (2016)
  2. Yun SW, Kim YS, Kim DH, Kim HC, Shin MC, Park JY, Kim HJ, Lee JY, J. Geol. Soc. Korea, 49(4), 503 (2013)
  3. Ministry of Land, Infrastructure and Transport, Water Resources Long-Term Comprehensive Plan (2001~2020) Third Revised Plan (2016).
  4. Bang SW, Jung JH, J. Environ. Policy, 4(2), 57 (2005)
  5. Park JK, Kim RH, Lee JY, Choi DH, Kim TD, J. Soil Groundwater Environ., 12(6), 92 (2007)
  6. Bang SR, Yoo KJ, Park JH, J. Korean Soc. Water Quality, 27(1), 120 (2011)
  7. Ministry of Environment, “Groundwater Quality Monitoring Network and Water Pollution Measurement Plan,” (2017).
  8. Korea Rural Community Corporation, “Gyeongsangnam-do Groundwater Management Plan Report,” (2015).
  9. Kim KS, Ph. D. Dissertation, Kyungbook National University (2018).
  10. Seo YG, Ph. D. Dissertation, The University of Suwon (2015).
  11. http://sgis.nier.go.kr/ (accessed Jun. 2019).
  12. Bea DS, Lee NY, Kwon HM, Cha MS, Yoon WY, Kim MS, Lee MK, “Statistical Theory and Applications,” Chungmungak, Seoul (2009).
  13. Huh MH, Lee YG, Commun. Korean Stat. Soc., 19(4), 591 (2012)
  14. Piper AM, EOS, Transactions, American Geophysical Union, 25(6), 914-923 (1944).
  15. Hong CS, Sung JH, J. Korean Data Inform. Sci. Soc., 28(5), 959 (2017)
  16. Yang KH, MS Thesis, Inha University (2011).
  17. Han SW, Kim BJ, Lee GJ, J. Ind. Technol., 3(1), 434 (2000)
  18. Choo CO, Kim JT, Chung IM, Kim NW, Jeong GC, J. Eng., Geol., 18(1), 103 (2008)
  19. Yun U, Cho BW, J. Eng. Geol., 15(4), 391 (2005)
  20. Han SW, Yang DS, Kim BJ, J. Ind. Technol., 5(1), 713 (2002)
  21. Oxtoby DW, Gillis HP, Butler LJ, “Principles of Modern Chemistry,” 8th ed., Cengage Learning, Boston (2016).
  22. Moon YR, Roo EH, Korea Environment Institute Report WO-06 (2006).
  23. Jeong CH, Lee YJ, Lee YC, Kim MS, Kim HK, Kim TS, Jo BU, Choi HY, J. Eng. Geol., 26(4), 531 (2016)
  24. Kim JK, Kwon KA, Byeon JH, Park JH, Park HG, Lim YJ, J. of KIHE, 20, 207-214 (2007).
  25. Keller EA, “Environmental geology,” 9th ed., Prentice Hall. New Jersey (2000).
  26. Park HR, Kim MK, Hong SP, J. Environ. Impact Assess., 24(1), 87 (2015)
  27. Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D, Geochimica Et Cosmochimica Acta., 53(8), 1727 (1989)
  28. Ahn JS, Ko KS, Chen CM, J. Soil Groundwater Environ., 12(5), 64 (2007)
  29. Park ME, Sung KY, Lee M, Lee PK, Kim MC, Econ. Envir. Geol., 38(5), 513 (2005)
  30. Kim JT, Park SJ, Kang MA, Choo CO, Jeong GC, J. Eng. Geol., 17(3), 445 (2007)