Applied Chemistry for Engineering, Vol.28, No.2, 206-213, April, 2017
활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열
Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon
E-mail:
초록
활성탄을 사용하여 수용액으로부터 crystal violet 염료의 흡착에 대해 조사하였으며, 흡착제의 양, 초기농도와 접촉시간 및 온도를 흡착변수로 사용하여 수행하였다. 흡착평형관계는 Langmuir 등온식에 잘 맞았다. 평가된 Langmuir 분리계수(RL = 0.02~0.106)를 바탕으로 이 흡착공정이 효과적인 처리(0 < RL < 1)가 가능하다는 것을 알았다. 흡착동력학 데이터는 유사 2차 반응속도식에 잘 맞는 것으로 나타났다. Gibbs 자유에너지(-1.61~-11.66 kJ/mol)와 엔탈피(147.209 kJ/mol)는 흡착공정이 자발적이고 흡열반응으로 진행된다는 것을 나타냈다. 등량흡착열은 표면덮임이 증가됨에 따라 흡착제-흡착질의 상호작용이 제한되어 표면부하량이 증가할수록 작아졌다.
The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor (RL = 0.02~0.106), this process could be employed as an effective treatment (0 < RL < 1). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.
- Perkins WS, Text. Chem. Color., 12, 262 (1980)
- Hao OJ, Kim H, Chiang PC, Crit. Rev. Environ. Sci. Technol., 30, 449 (2000)
- Malik PK, Saha SK, Sep. Purif. Technol., 31(3), 241 (2003)
- Carliell CM, Barclay SJ, Buckley CA, Water Res., 22, 225 (1996)
- Mohanty K, Naidu JT, Meikap BC, Biswas MN, Ind. Eng. Chem. Res., 45(14), 5165 (2006)
- Basar CA, J. Hazard. Mater., 135(1-3), 232 (2006)
- Saeed A, Sharif M, Iqbal M, J. Hazard. Mater., 179(1-3), 564 (2010)
- Ferreira BCS, Teodoro FS, Mageste AB, Gil LF, Freitas RPD, Gurgel LVA, Ind. Crop. Prod., 65, 521 (2015)
- Pavan FA, Camacho ES, Lima EC, Dotto GL, Branco VTA, Dias SLP, J. Environ. Chem. Eng., 2, 230 (2014)
- Krishnan NP, Ilayaraja M, Karthik R, Kannan RS, World J. Pharm. Pharm. Sci., 3, 713 (2014)
- Wikipedia, en.wikipedia.org, “crystal violet”, http://en.wikipedia.org/wiki/Crystal_violet.
- Lee JJ, Appl. Chem. Eng., 26(5), 581 (2015)
- Porkodi K, Kumar KV, J. Hazard. Mater., 143(1-2), 311 (2007)
- Lee JJ, Appl. Chem. Eng., 27(2), 199 (2016)
- Lee DC, Lee JJ, Appl. Chem. Eng., 27(6), 590 (2016)
- Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
- Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almeida VC, Chem. Eng. J., 181-182, 243 (2012)
- Srihari V, Das A, Desalination, 225(1-3), 220 (2008)
- Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)
- Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
- Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
- Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)
- Dogan M, Alkan M, J. Colloid Interface Sci., 267(1), 32 (2003)