화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 144-152, January, 2020
SOHIO process legacy waste treatment: Uranium recovery using ion exchange
E-mail:
The feasibility of employing ion-exchange resins for the selective removal of uranium from a complex waste effluent has been investigated. The source of the effluent is a treatment process to reduce the volume of a spent uranium containing catalyst prior to its immobilisation and disposal in South Korea. Commercial anion exchange and chelation resins have been screened, along with an in-house synthesized polyamine functionalized resin. The Langmuir isotherm model produced the best fit for UO2 2 + binding to all resins, with Purolite MTS957, a mixed sulfonic/phosphonic acid functionalised resin, showing the highest equilibrium adsorption capacity for UO2 2+, 96.15 mg g-1. The Modified Dose- Response Model was found to adequately represent breakthrough across all flow rates used and for all resins tested under dynamic testing conditions. The maximum uranium loading capacities under dynamic conditions for simulant and real wastes were established as 131.52 mg g-1 and 68.62 mg g-1, respectively. Purolite MTS957 effectively decontaminated the real effluent to uranium levels below the Korean release limit of 1 mg L-1. Over 99.9% uranium was successfully eluted from the resin bed in under 20 BV with a mixed sodium carbonate/sulfate eluent.
  1. Kim KW, Kim MJ, Oh MK, Kim J, Foster RI, Lee KY, Eurasia 2018 Waste Management Symposium Proceedings, Istanbul, 2018.
  2. Cavani F, Centi G, Marion P, Metal Oxide Catalysis, Wiley-VCH Verlag GmBH & Co., pp.771 2009.
  3. Kim KW, Kim MJ, Oh MK, Kim J, Sung HH, Foster RI, Lee KY, J. Nucl. Sci. Technol., 55(12), 1459 (2018)
  4. Kim KW, Lee EH, Lee KY, Moon JK, Chung DY, Patent 9,181,605 B2, 2015.
  5. Foster RI, Kim KW, Oh MK, Lee KY, Water Res., 158, 82 (2019)
  6. Sung HH, University of Science and Technology, Korea, 2018.
  7. Kim KW, Foster RI, Kim J, Sung HH, Yang D, Shon WJ, Oh MK, Lee KY, J. Nucl. Mater., 516, 238 (2019)
  8. Crini G, Lichtfouse E, Environ. Chem. Lett., 17, 145 (2019)
  9. Bolisetty S, Peydayesh M, Mezzenga R, Chem. Soc. Rev., 48, 463 (2019)
  10. Silva RA, Hawboldt K, Zhang Y, Miner. Process. Extr. Metall. Rev., 39(6), 395 (2018)
  11. Veliscek-Carolan J, J. Hazard. Mater., 318, 266 (2016)
  12. Gupta NK, Choudhary BC, Gupta A, Achary SN, Sengupta A, J. Mol. Liq., 289, 111121 (2019)
  13. He W, Ai K, Ren X, Wang S, Lu L, J. Mater. Chem. A, 5, 19593 (2017)
  14. Lingamdinne LP, Koduru JR, Karri RR, J. Environ. Manage., 231, 622 (2019)
  15. Husnain SM, Um W, Lee W, Chang YS, RSC Adv., 8, 2521 (2018)
  16. Feng M, Zhang P, Zhou HC, Sharma VK, Chemosphere, 209, 783 (2018)
  17. Lu F, Astruc D, Coord. Chem. Rev., 356, 147 (2018)
  18. Oleksiienko O, Wolkersdorfer C, Sillanpaa M, Chem. Eng. J., 317, 570 (2017)
  19. Oyewo OA, Onyango MS, Wolkersdorfer C, J. Environ. Radioact., 164, 369 (2016)
  20. Joseph L, Jun BM, Flora JRV, Park CM, Yoon Y, Chemosphere, 229, 142 (2019)
  21. Xie Y, Chen CL, Ren XM, Wang XX, Wang HY, Wang XK, Prog. Mater. Sci., 103, 180 (2019)
  22. Lunt D, Boshoff P, Boylett M, El-Ansary Z, J. S. Afr. Inst. Min. Metall., 107, 419 (2007)
  23. Rosenberg E, Pinson G, Tsosie R, Tutu H, Cukrowska E, Johnson Matthey Technol. Rev., 60(1), 59 (2016)
  24. Zaganiaris EJ, Ion Exchange Resins in Uranium Hydrometallurgy, Books on Demand GmbH, France, 2009.
  25. Edwards CR, Oliver AJ, J. Miner. Met. Mater. Soc., 52, 12 (2000)
  26. Ahrland S, Acta Chem. Scand., 5, 1151 (1951)
  27. Amphlett JTM, Ogden MD, Foster RI, Syna N, Soldenhoff K, Sharrad CA, Chem. Eng. J., 334, 1361 (2018)
  28. Amphlett JTM, Ogden MD, Foster RI, Syna N, Soldenhoff KH, Sharrad CA, Chem. Eng. J., 354, 633 (2018)
  29. Page MJ, Soldenhoff K, Ogden MD, Hydrometallurgy, 169, 275 (2017)
  30. KAERI report KAERI/RR-4271/2017, Development of technology for volume reduction of depleted uranium waste, (2017).
  31. Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS, J. Hazard. Mater., 168(2-3), 1053 (2009)
  32. Amphlett JTM, Sharrad CA, Ogden MD, Chem. Eng. J., 342, 133 (2018)
  33. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
  34. NSSC, Radiation Protection Guide No. 2014-34, (2014).
  35. Thomas HC, J. Am. Chem. Soc., 66, 1664 (1944)
  36. Yoon YH, Nelson JH, Am. Ind. Hyg. Assoc. J., 45, 509 (1984)
  37. Yan G, Viraraghavan T, Chen M, Adsorpt. Sci. Technol., 19, 25 (2001)
  38. Ogden MD, Moon EM, Wilson A, Pepper SE, Chem. Eng. J., 317, 80 (2017)
  39. Sole KC, Mooiman MB, Hardwick E, Sep. Purif. Rev., 47(2), 159 (2018)
  40. McKevit B, Dreisinger D, Hydrometallurgy, 98, 116 (2009)
  41. Bezzina JP, Ruder LR, Dawson R, Ogden MD, Water Res., 158, 257 (2019)
  42. Guillaumont R, Fanghanel T, Fuger J, Grenthe L, Neck V, Palmer DA, Rand MH, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, 2003.
  43. Pang HB, Kuo LJ, Wai CM, Miyamoto N, Joshi R, Wood JR, Strivens JE, Janke CJ, Oyola Y, Das S, Mayes RT, Gill GA, Ind. Eng. Chem. Res., 55(15), 4313 (2016)
  44. Ivanov AS, Parker BF, Zhang Z, Aguila B, Sun Q, Ma S, Popova SJ, Arnold J, Mayes RT, Dai S, Bryantsev VS, Rao L, Popovs I, Nat. Commun., 10, 819 (2019)
  45. Ladeira ACQ, Morais CA, Miner. Eng., 18(13-14), 1337 (2005)