Journal of Industrial and Engineering Chemistry, Vol.81, 135-143, January, 2020
Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk
E-mail:
Rice husk is a promising abundant bioresource for the production of high value-added silica materials because it has the highest SiO2 content among all plant-based resources. In this study, ordered mesoporous silica with various pore structures are synthesized from rice husk by combining acid leaching, chemical dissolution, and co-assembly with additional surfactants. Depending upon the type of the surfactant used and the co-assembly conditions, various mesoporous silica that have controlled pore structures (mesocellular forms and hexagonal nanochannel structures), pore sizes (3-60 nm), large surface areas (297-895 m2 g-1), and pore volumes (0.81-1.77 cm3 g-1) are successfully synthesized from a sodium silicate solution, which was made from high-purity silica (99.8%) extracted from rice husk. The synthesis of high value-added silica from an abundant bioresource can open up new avenues for
sustainable and environment-friendly industrial development.
- Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM, Ecol. Eng., 99, 282 (2017)
- Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M, Nature, 448, 209 (2007)
- Yamanaka S, Takeda H, Komatsubara S, Ito F, Usami H, Togawa E, Yoshino K, Appl. Phys. Lett., 95, 123703 (2009)
- Hart DM, Australia Aust. J. Bot., 36, 159 (1988)
- Ding TP, Ma GR, Shui MX, Wan DF, Li RH, China Chem. Geol., 218, 41 (2005)
- Shen Y, Renew. Sust. Energ. Rev., 80, 453 (2017)
- An DM, Guo YP, Zhu YC, Wang ZC, Chem. Eng. J., 162(2), 509 (2010)
- Chen P, Bie H, Bie R, Korean J. Chem. Eng., 35(9), 1911 (2018)
- Zeng D, Liu S, Gong W, Chen H, Wang G, RSC Adv., 4, 20535 (2014)
- Chen G, Shan R, Shi J, Yan B, Fuel Process Technol., 133, 8 (2015)
- Shen YF, Zhao PT, Shao QF, Takahashi F, Yoshikawa K, Appl. Energy, 160, 808 (2015)
- Jung DS, Ryou M, Sung YJ, Park SB, Choi JW, PNAS, 110, 12229 (2013)
- Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA, Chem. Eng. J., 264, 899 (2015)
- Hossain S, Mathur L, Roy PK, J. Asian Ceram. Soc., 6, 299 (2018)
- Dizaji HB, Zeng T, Hartmann I, Enke D, Schliermann T, Lenz V, Bidabadi M, Appl. Sci., 9, 1083 (2019)
- Biomass Research and Development Technical advisory Committee, Roadmap for Bioenergy and Biobased Products in the United States, (2007).
- Ozbek B, Unal S, Korean J. Chem. Eng., 34(7), 1992 (2017)
- Ying JY, Mehnert CP, Wong MS, Angew. Chem.-Int. Edit., 38, 56 (1999)
- Watermann A, Brieger J, Nanomaterials, 7, 189 (2017)
- Witoon T, Chareonpanich M, Limtrakul J, Mater. Lett., 62, 1476 (2008)
- Jullaphan O, Witoon T, Chareonpanich M, Mater. Lett., 63, 1303 (2009)
- Jung HT, Park Y, Ko YS, Lee JY, Margandan B, Int. J. Greenh. Gas Con., 3, 545 (2009)
- Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT, J. Hazard. Mater., 175(1-3), 928 (2010)
- Alyosef HA, Schneider D, Wassersleben S, Roggendorf H, Weiß M, Eilert A, Denecke R, Hartmann I, Enke D, ACS Sustain. Chem. Eng., 3, 2012 (2015)
- Suyanta S, Kuncaka A, Indo. J. Chem., 11, 279 (2011)
- Renuka NK, Praveen AK, Anas K, Mater. Lett., 109, 70 (2013)
- Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S, Nanomed. Nanotechnol. Biol. Med., 11, 313 (2015)
- Singh P, Sen K, J. Porous Mat., 25, 965 (2018)
- Liang J, Liang Z, Zou R, Zhao Y, Adv. Mater., 29, 170113 (2017)
- Ji X, Evers S, Black R, Nazar LF, Nat. Commun., 2, 325 (2011)
- Knezevic NZ, Ilic N, Dokic V, Petrovic R, Janackovic D, ACS Appl. Mater. Interfaces, 10, 20231 (2018)
- Della VP, Kuhn I, Hotza D, Mater. Lett., 57, 818 (2002)
- Kim SS, Pauly TR, Pinnavaia TJ, Chem. Commun., 1661 (2000).
- Lin YS, Lin HP, Mou CY, Microporous Mesoporous Mater., 76, 203 (2004)
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, NREL/TP-510-42618, National Renewable Energy Laboratory, Colorado, 2008.
- Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, NREL/TP-510-42619, National Renewable Energy Laboratory, Colorado, 2008.
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, NREL/TP-510-42622, National Renewable Energy Laboratory, Colorado, 2005.
- Lee JH, Kwon JH, Lee JW, Lee HS, Chang JH, Sang BI, J. Ind. Eng. Chem., 50, 79 (2017)
- Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ, J. Clean Prod., 217, 352 (2019)
- Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 121(1), 254 (1999)
- Boissiere C, Martines MAU, Tokumoto M, Larbot A, Prouzet E, Chem. Mater., 15, 509 (2013)
- Yao ML, Dong YY, Feng XX, Hu X, Jia AP, Xie GQ, Hu GS, Lu JQ, Luo MF, Fan MH, Fuel, 123, 66 (2014)
- Schmidt-Winkel P, Lukens WW, Yang P, Margolese DI, Lettow JS, Ying JY, Stucky GD, Chem. Mater., 12, 686 (2000)
- Alothman ZA, Materials, 5, 2874 (2012)
- Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
- Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M, Chem. Soc. Rev., 46, 389 (2017)