화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 135-143, January, 2020
Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk
E-mail:
Rice husk is a promising abundant bioresource for the production of high value-added silica materials because it has the highest SiO2 content among all plant-based resources. In this study, ordered mesoporous silica with various pore structures are synthesized from rice husk by combining acid leaching, chemical dissolution, and co-assembly with additional surfactants. Depending upon the type of the surfactant used and the co-assembly conditions, various mesoporous silica that have controlled pore structures (mesocellular forms and hexagonal nanochannel structures), pore sizes (3-60 nm), large surface areas (297-895 m2 g-1), and pore volumes (0.81-1.77 cm3 g-1) are successfully synthesized from a sodium silicate solution, which was made from high-purity silica (99.8%) extracted from rice husk. The synthesis of high value-added silica from an abundant bioresource can open up new avenues for sustainable and environment-friendly industrial development.
  1. Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM, Ecol. Eng., 99, 282 (2017)
  2. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M, Nature, 448, 209 (2007)
  3. Yamanaka S, Takeda H, Komatsubara S, Ito F, Usami H, Togawa E, Yoshino K, Appl. Phys. Lett., 95, 123703 (2009)
  4. Hart DM, Australia Aust. J. Bot., 36, 159 (1988)
  5. Ding TP, Ma GR, Shui MX, Wan DF, Li RH, China Chem. Geol., 218, 41 (2005)
  6. Shen Y, Renew. Sust. Energ. Rev., 80, 453 (2017)
  7. An DM, Guo YP, Zhu YC, Wang ZC, Chem. Eng. J., 162(2), 509 (2010)
  8. Chen P, Bie H, Bie R, Korean J. Chem. Eng., 35(9), 1911 (2018)
  9. Zeng D, Liu S, Gong W, Chen H, Wang G, RSC Adv., 4, 20535 (2014)
  10. Chen G, Shan R, Shi J, Yan B, Fuel Process Technol., 133, 8 (2015)
  11. Shen YF, Zhao PT, Shao QF, Takahashi F, Yoshikawa K, Appl. Energy, 160, 808 (2015)
  12. Jung DS, Ryou M, Sung YJ, Park SB, Choi JW, PNAS, 110, 12229 (2013)
  13. Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA, Chem. Eng. J., 264, 899 (2015)
  14. Hossain S, Mathur L, Roy PK, J. Asian Ceram. Soc., 6, 299 (2018)
  15. Dizaji HB, Zeng T, Hartmann I, Enke D, Schliermann T, Lenz V, Bidabadi M, Appl. Sci., 9, 1083 (2019)
  16. Biomass Research and Development Technical advisory Committee, Roadmap for Bioenergy and Biobased Products in the United States, (2007).
  17. Ozbek B, Unal S, Korean J. Chem. Eng., 34(7), 1992 (2017)
  18. Ying JY, Mehnert CP, Wong MS, Angew. Chem.-Int. Edit., 38, 56 (1999)
  19. Watermann A, Brieger J, Nanomaterials, 7, 189 (2017)
  20. Witoon T, Chareonpanich M, Limtrakul J, Mater. Lett., 62, 1476 (2008)
  21. Jullaphan O, Witoon T, Chareonpanich M, Mater. Lett., 63, 1303 (2009)
  22. Jung HT, Park Y, Ko YS, Lee JY, Margandan B, Int. J. Greenh. Gas Con., 3, 545 (2009)
  23. Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT, J. Hazard. Mater., 175(1-3), 928 (2010)
  24. Alyosef HA, Schneider D, Wassersleben S, Roggendorf H, Weiß M, Eilert A, Denecke R, Hartmann I, Enke D, ACS Sustain. Chem. Eng., 3, 2012 (2015)
  25. Suyanta S, Kuncaka A, Indo. J. Chem., 11, 279 (2011)
  26. Renuka NK, Praveen AK, Anas K, Mater. Lett., 109, 70 (2013)
  27. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S, Nanomed. Nanotechnol. Biol. Med., 11, 313 (2015)
  28. Singh P, Sen K, J. Porous Mat., 25, 965 (2018)
  29. Liang J, Liang Z, Zou R, Zhao Y, Adv. Mater., 29, 170113 (2017)
  30. Ji X, Evers S, Black R, Nazar LF, Nat. Commun., 2, 325 (2011)
  31. Knezevic NZ, Ilic N, Dokic V, Petrovic R, Janackovic D, ACS Appl. Mater. Interfaces, 10, 20231 (2018)
  32. Della VP, Kuhn I, Hotza D, Mater. Lett., 57, 818 (2002)
  33. Kim SS, Pauly TR, Pinnavaia TJ, Chem. Commun., 1661 (2000).
  34. Lin YS, Lin HP, Mou CY, Microporous Mesoporous Mater., 76, 203 (2004)
  35. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, NREL/TP-510-42618, National Renewable Energy Laboratory, Colorado, 2008.
  36. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, NREL/TP-510-42619, National Renewable Energy Laboratory, Colorado, 2008.
  37. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, NREL/TP-510-42622, National Renewable Energy Laboratory, Colorado, 2005.
  38. Lee JH, Kwon JH, Lee JW, Lee HS, Chang JH, Sang BI, J. Ind. Eng. Chem., 50, 79 (2017)
  39. Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ, J. Clean Prod., 217, 352 (2019)
  40. Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 121(1), 254 (1999)
  41. Boissiere C, Martines MAU, Tokumoto M, Larbot A, Prouzet E, Chem. Mater., 15, 509 (2013)
  42. Yao ML, Dong YY, Feng XX, Hu X, Jia AP, Xie GQ, Hu GS, Lu JQ, Luo MF, Fan MH, Fuel, 123, 66 (2014)
  43. Schmidt-Winkel P, Lukens WW, Yang P, Margolese DI, Lettow JS, Ying JY, Stucky GD, Chem. Mater., 12, 686 (2000)
  44. Alothman ZA, Materials, 5, 2874 (2012)
  45. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  46. Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M, Chem. Soc. Rev., 46, 389 (2017)