화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 245-254, November, 2019
A novel morphology of 3D graphene hydrogel nanotubes for high-performance nonenzymatic hydrogen peroxide sensor
E-mail:,
A novel nanostructure of three-dimensional graphene hydrogel nanotubes (3DGHNTs) is successfully synthesized for the purpose of sensing non-enzymatic H2O2 in alkaline solution. The 3DGHNTs were fabricated using manganese dioxide nanotubes (MnO2 NTs) as the effective sacrificial template and without the use of any acids or a high temperature process. 3DGH with different percentages of MnO2 NTs ranging from 5 to 30% are prepared via a hydrothermal method. When the loading percentage of MnO2 NTs is 10%, the obtained 3DGHNTs-Mn10 nanocomposite exhibits a large specific surface area with high porosity, which enhance the electrochemical properties for H2O2 detection. The developed biosensor exhibits excellent sensitivity (220.4 mA μM-1 cm-2) with a wide linear detection range (25 μ M-22.57 mM) and a low detection limit (4 μM). The biosensor also shows a fast response time (less than 5 s) and good selectivity as well as reproducibility and long-term stability. Hence, the prepared 3DGHNTs-Mn10 nanocomposite can be considered a promising electrode material for the detection of H2O2 in real sample.
  1. Sies H, J. Biol. Chem., 289(13), 8735 (2014)
  2. Sitnikova NA, et al., Anal. Chem., 83(6), 2359 (2011)
  3. Sies H, Redox Biol., 11, 613 (2017)
  4. Song MJ, Hwang SW, Whang D, Talanta, 80(5), 1648 (2010)
  5. Kacar C, Dalkiran B, Erden PE, Kilic E, Appl. Surf. Sci., 311, 139 (2014)
  6. Miller EW, Dickinson BC, Chang CJ, Proc. Natl. Acad. Sci., 107(36), 15681 (2010)
  7. Nogueira RFP, Oliveira MC, Paterlini WC, Talanta, 66(1), 86 (2005)
  8. Tsaplev YB, J. Anal. Chem., 67(6), 506 (2012)
  9. Li G, et al., Org. Lett., 15(4), 924 (2013)
  10. Ge S, et al., Biosens. Bioelectr., 71, 456 (2015)
  11. Pinkernell U, Effkemann S, Karst U, Anal. Chem., 69(17), 3623 (1997)
  12. Shrestha BK, et al., Biosens. Bioelectron., 94, 686 (2017)
  13. Shrestha BK, et al., Sci. Rep., 7(1), 16191 (2017)
  14. Ko TH, Seong JG, Radhakrishnan S, Kwak CS, Khil MS, Kim HY, Kim BS, J. Ind. Eng. Chem., 73, 1 (2019)
  15. Yassin MA, Shrestha BK, Ahmad R, Shrestha S, Park CH, Kim CS, J. Ind. Eng. Chem., 73, 106 (2019)
  16. Yao S, et al., Analytica Chimica Acta, 557(1-2), 78 (2006)
  17. Woo S, et al., Electrochimica Acta, 59, 509 (2012)
  18. Pan Y, et al., Talanta, 141, 86 (2015)
  19. Ramachandran K, Zahoor A, Kumar TR, Nahm KS, Balasubramani A, Kumar GG, J. Ind. Eng. Chem., 46, 19 (2017)
  20. Geim AK, Science, 324(5934), 1530 (2009)
  21. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2009)
  22. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S, Prog. Mater. Sci., 56(8), 1178 (2011)
  23. Wu T, et al., J. Mater. Chem. A, 1(26), 7612 (2013)
  24. Xu Y, et al., ACS Nano, 4(7), 4324 (2010)
  25. Cong HP, et al., ACS Nano, 6(3), 2693 (2012)
  26. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM, Nat. Mater., 10(6), 424 (2011)
  27. Guo HL, et al., J. Mater. Chem. A, 1(6), 2248 (2013)
  28. Zhu S, et al., J. Mater. Chem. A, 3(4), 1540 (2015)
  29. Yuan M, et al., Sens. Actuators B-Chem., 190, 707 (2014)
  30. Ruiyi L, et al., Biosens. Bioelectron., 79, 457 (2016)
  31. Qi Y, et al., Sens. Actuators B-Chem., 279, 170 (2018)
  32. Gu X, et al., RSC Adv., 4(108), 63189 (2014)
  33. Gu YJ, Xing MY, Zhang JL, Appl. Surf. Sci., 319, 8 (2014)
  34. Barakat NA, et al., Mater. Lett., 191, 80 (2017)
  35. Ghouri ZK, Barakat NAM, Alam A, Alsoufi MS, Bawazeer TM, Mohamed AF, Kim HY, Electrochim. Acta, 184, 193 (2015)
  36. Ghouri ZK, et al., J. Mater. Sci.: Mater. Electron., 27(4), 3894 (2016)
  37. Cai ZX, et al., Sens. Actuators B-Chem., 222, 567 (2016)
  38. Tian Y, et al., Sens. Actuators B-Chem., 241, 584 (2017)
  39. Feng X, et al., Nanoscale, 7, 2427 (2015)
  40. Lou XW, Archer LA, Yang ZC, Adv. Mater., 20(21), 3987 (2008)
  41. Ye J, et al., Small, 6(2), 296 (2010)
  42. Cao ZZ, Yang HY, Dou P, Wang C, Zheng J, Xu XH, Electrochim. Acta, 209, 700 (2016)
  43. Xu ZQ, Ma JH, Shi MH, Xie YH, Feng C, J. Colloid Interface Sci., 523, 144 (2018)
  44. Yang J, Cho M, Lee Y, Biosens. Bioelectron., 75, 15 (2016)
  45. Wang YB, Lin F, Shang B, Peng B, Deng ZW, J. Colloid Interface Sci., 522, 191 (2018)
  46. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80(6), 1339 (1958)
  47. Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc., 130(18), 5856 (2008)
  48. Luo J, et al., J. Phys. Chem. C, 112(33), 12594 (2008)
  49. Gao H, et al., ACS Appl. Mater. Interfaces, 4(5), 2801 (2012)
  50. Ghouri ZK, et al., Superlattices Microstruct., 90, 184 (2016)
  51. Awan Z, Ghouri ZK, Hashmi S, Int. J. Hydrog. Energy, 43(5), 2930 (2018)
  52. Wang H, et al., J. Mater. Chem. A, 4(13), 4908 (2016)
  53. Barakat NAM, Motlak M, Ghouri ZK, Yasin AS, El-Newehyd MH, Al-Deyab SS, J. Mol. Catal. A-Chem., 421, 83 (2016)
  54. Geng DS, Yang SL, Zhang Y, Yang JL, Liu J, Li RY, Sham TK, Sun XL, Ye SY, Knights S, Appl. Surf. Sci., 257(21), 9193 (2011)
  55. He H, Gao C, ACS Appl. Mater. Interfaces, 2(11), 3201 (2010)
  56. Ghouri ZK, et al., J. Alloy. Compd., 642, 210 (2015)
  57. Gao Z, et al., Nanoscale, 9(45), 17710 (2017)
  58. Wang Y, et al., Energy Environ. Sci., 10(4), 941 (2017)
  59. Dong S, et al., Biosensors Bioelectron., 26(10), 4082 (2011)
  60. Xue Y, et al., Talanta, 176, 397 (2018)
  61. Li L, et al.,, Talanta, 82(5), 1637 (2010)
  62. Xiong L, et al., ECS Electrochem. Lett., 3(12), B26 (2014)
  63. Yin H, et al., Analytica Chimica Acta, 1038, 11 (2018)
  64. Han Y, Zheng JB, Dong SY, Electrochim. Acta, 90, 35 (2013)
  65. Wang Q, et al., Electroanalysis, 26(1), 156 (2014)
  66. Yang J, Zhao F, Zeng B, RSC Adv., 5(28), 22060 (2015)
  67. Zhang S, Sheng Q, Zheng J, RSC Adv., 5(34), 26878 (2015)
  68. Zhang S, Zheng J, Talanta, 159, 231 (2016)