Journal of Industrial and Engineering Chemistry, Vol.79, 245-254, November, 2019
A novel morphology of 3D graphene hydrogel nanotubes for high-performance nonenzymatic hydrogen peroxide sensor
E-mail:,
A novel nanostructure of three-dimensional graphene hydrogel nanotubes (3DGHNTs) is successfully synthesized for the purpose of sensing non-enzymatic H2O2 in alkaline solution. The 3DGHNTs were fabricated using manganese dioxide nanotubes (MnO2 NTs) as the effective sacrificial template and without the use of any acids or a high temperature process. 3DGH with different percentages of MnO2 NTs ranging from 5 to 30% are prepared via a hydrothermal method. When the loading percentage of MnO2 NTs is 10%, the obtained 3DGHNTs-Mn10 nanocomposite exhibits a large specific surface area with high porosity, which enhance the electrochemical properties for H2O2 detection. The developed biosensor exhibits excellent sensitivity (220.4 mA μM-1 cm-2) with a wide linear detection range (25 μ M-22.57 mM) and a low detection limit (4 μM). The biosensor also shows a fast response time (less than 5 s) and good selectivity as well as reproducibility and long-term stability. Hence, the prepared 3DGHNTs-Mn10 nanocomposite can be considered a promising electrode material for the detection of H2O2 in real sample.
- Sies H, J. Biol. Chem., 289(13), 8735 (2014)
- Sitnikova NA, et al., Anal. Chem., 83(6), 2359 (2011)
- Sies H, Redox Biol., 11, 613 (2017)
- Song MJ, Hwang SW, Whang D, Talanta, 80(5), 1648 (2010)
- Kacar C, Dalkiran B, Erden PE, Kilic E, Appl. Surf. Sci., 311, 139 (2014)
- Miller EW, Dickinson BC, Chang CJ, Proc. Natl. Acad. Sci., 107(36), 15681 (2010)
- Nogueira RFP, Oliveira MC, Paterlini WC, Talanta, 66(1), 86 (2005)
- Tsaplev YB, J. Anal. Chem., 67(6), 506 (2012)
- Li G, et al., Org. Lett., 15(4), 924 (2013)
- Ge S, et al., Biosens. Bioelectr., 71, 456 (2015)
- Pinkernell U, Effkemann S, Karst U, Anal. Chem., 69(17), 3623 (1997)
- Shrestha BK, et al., Biosens. Bioelectron., 94, 686 (2017)
- Shrestha BK, et al., Sci. Rep., 7(1), 16191 (2017)
- Ko TH, Seong JG, Radhakrishnan S, Kwak CS, Khil MS, Kim HY, Kim BS, J. Ind. Eng. Chem., 73, 1 (2019)
- Yassin MA, Shrestha BK, Ahmad R, Shrestha S, Park CH, Kim CS, J. Ind. Eng. Chem., 73, 106 (2019)
- Yao S, et al., Analytica Chimica Acta, 557(1-2), 78 (2006)
- Woo S, et al., Electrochimica Acta, 59, 509 (2012)
- Pan Y, et al., Talanta, 141, 86 (2015)
- Ramachandran K, Zahoor A, Kumar TR, Nahm KS, Balasubramani A, Kumar GG, J. Ind. Eng. Chem., 46, 19 (2017)
- Geim AK, Science, 324(5934), 1530 (2009)
- Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2009)
- Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S, Prog. Mater. Sci., 56(8), 1178 (2011)
- Wu T, et al., J. Mater. Chem. A, 1(26), 7612 (2013)
- Xu Y, et al., ACS Nano, 4(7), 4324 (2010)
- Cong HP, et al., ACS Nano, 6(3), 2693 (2012)
- Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM, Nat. Mater., 10(6), 424 (2011)
- Guo HL, et al., J. Mater. Chem. A, 1(6), 2248 (2013)
- Zhu S, et al., J. Mater. Chem. A, 3(4), 1540 (2015)
- Yuan M, et al., Sens. Actuators B-Chem., 190, 707 (2014)
- Ruiyi L, et al., Biosens. Bioelectron., 79, 457 (2016)
- Qi Y, et al., Sens. Actuators B-Chem., 279, 170 (2018)
- Gu X, et al., RSC Adv., 4(108), 63189 (2014)
- Gu YJ, Xing MY, Zhang JL, Appl. Surf. Sci., 319, 8 (2014)
- Barakat NA, et al., Mater. Lett., 191, 80 (2017)
- Ghouri ZK, Barakat NAM, Alam A, Alsoufi MS, Bawazeer TM, Mohamed AF, Kim HY, Electrochim. Acta, 184, 193 (2015)
- Ghouri ZK, et al., J. Mater. Sci.: Mater. Electron., 27(4), 3894 (2016)
- Cai ZX, et al., Sens. Actuators B-Chem., 222, 567 (2016)
- Tian Y, et al., Sens. Actuators B-Chem., 241, 584 (2017)
- Feng X, et al., Nanoscale, 7, 2427 (2015)
- Lou XW, Archer LA, Yang ZC, Adv. Mater., 20(21), 3987 (2008)
- Ye J, et al., Small, 6(2), 296 (2010)
- Cao ZZ, Yang HY, Dou P, Wang C, Zheng J, Xu XH, Electrochim. Acta, 209, 700 (2016)
- Xu ZQ, Ma JH, Shi MH, Xie YH, Feng C, J. Colloid Interface Sci., 523, 144 (2018)
- Yang J, Cho M, Lee Y, Biosens. Bioelectron., 75, 15 (2016)
- Wang YB, Lin F, Shang B, Peng B, Deng ZW, J. Colloid Interface Sci., 522, 191 (2018)
- Hummers WS, Offeman RE, J. Am. Chem. Soc., 80(6), 1339 (1958)
- Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc., 130(18), 5856 (2008)
- Luo J, et al., J. Phys. Chem. C, 112(33), 12594 (2008)
- Gao H, et al., ACS Appl. Mater. Interfaces, 4(5), 2801 (2012)
- Ghouri ZK, et al., Superlattices Microstruct., 90, 184 (2016)
- Awan Z, Ghouri ZK, Hashmi S, Int. J. Hydrog. Energy, 43(5), 2930 (2018)
- Wang H, et al., J. Mater. Chem. A, 4(13), 4908 (2016)
- Barakat NAM, Motlak M, Ghouri ZK, Yasin AS, El-Newehyd MH, Al-Deyab SS, J. Mol. Catal. A-Chem., 421, 83 (2016)
- Geng DS, Yang SL, Zhang Y, Yang JL, Liu J, Li RY, Sham TK, Sun XL, Ye SY, Knights S, Appl. Surf. Sci., 257(21), 9193 (2011)
- He H, Gao C, ACS Appl. Mater. Interfaces, 2(11), 3201 (2010)
- Ghouri ZK, et al., J. Alloy. Compd., 642, 210 (2015)
- Gao Z, et al., Nanoscale, 9(45), 17710 (2017)
- Wang Y, et al., Energy Environ. Sci., 10(4), 941 (2017)
- Dong S, et al., Biosensors Bioelectron., 26(10), 4082 (2011)
- Xue Y, et al., Talanta, 176, 397 (2018)
- Li L, et al.,, Talanta, 82(5), 1637 (2010)
- Xiong L, et al., ECS Electrochem. Lett., 3(12), B26 (2014)
- Yin H, et al., Analytica Chimica Acta, 1038, 11 (2018)
- Han Y, Zheng JB, Dong SY, Electrochim. Acta, 90, 35 (2013)
- Wang Q, et al., Electroanalysis, 26(1), 156 (2014)
- Yang J, Zhao F, Zeng B, RSC Adv., 5(28), 22060 (2015)
- Zhang S, Sheng Q, Zheng J, RSC Adv., 5(34), 26878 (2015)
- Zhang S, Zheng J, Talanta, 159, 231 (2016)