화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.8, 1371-1376, August, 2019
Atmospheric-pressure floating electrode-dielectric barrier discharge with flexible electrodes: Effect of conductor shapes
E-mail:
The plasma characteristics of atmospheric-pressure floating electrode-dielectric barrier discharges (FEDBDs), which comprised flexible electrodes and were able to generate a plasma along the curvature of skin, were investigated using Cu conductors with various shapes in the flexible powered electrode. These Cu conductors have similar areas but different contour lengths and the shapes of a square, a dumbbell, a star, and a zigzag pattern. The optical intensity and electron temperature of the atmospheric-pressure FE-DBDs increased with the contour length of the conductor used in the flexible powered electrode. This behavior is explained in terms of the changes in the strength of the electric field with the contour length of the conductor, implying that the plasma properties of atmospheric-pressure FEDBDs with flexible electrodes can be controlled by modulating the contour length or the shape of the electrical conductor in the flexible powered electrode. These results are expected to contribute to the development of an atmospheric- pressure FE-DBD system for plasma medicine.
  1. Schaepkens M, Oehrlein GS, Hedlund C, Jonsson LB, Blom HO, J. Vac. Sci. Technol. A, 16(6), 3281 (1998)
  2. Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43 (2017)
  3. Cho SW, Kim CK, Lee JK, Moon SH, Chae H, J. Vac. Sci. Technol. A, 30, 051301 (2012)
  4. Lee TH, Lim BR, Yong KJ, Kwon WS, Park MW, Korean J. Chem. Eng., 34(9), 2502 (2017)
  5. Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474 (2018)
  6. Choi JH, Kim SJ, Kim HT, Cho SM, Korean J. Chem. Eng., 35(6), 1348 (2018)
  7. Fridman G, Friedman G, Gutsol A. Shekhter AB, Vasilets VN, Fridman A, Plasma Process. Polym., 5, 503 (2008)
  8. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD, J. Phys. D-Appl. Phys., 44, 013002 (2011)
  9. Graves DB, J. Phys. D-Appl. Phys., 45, 206330 (2012)
  10. Xiong Z, Roe J, Grammer TC, Graves DB, Plasma Process. Polym., 13, 588 (2016)
  11. Weltmann KD, von Woedtke T, Plasma Phys. Control. Fusion, 59, 014031 (2017)
  12. Kolb JF, Mohamed AA, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH, Appl. Phys. Lett., 92, 241501 (2008)
  13. Lu XP, Jiang ZH, Xiong Q, Tang ZY, Pan Y, Appl. Phys. Lett., 92, 151504 (2008)
  14. Lee HW, Nam SH, Mohamed AH, Kim GC, Lee JK, Plasma Process. Polym., 7, 274 (2010)
  15. Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1 (2003)
  16. Pavlovich MJ, Chen Z, Sakiyama Y, Clark DS, Graves DB, Plasma Process. Polym., 10, 69 (2013)
  17. Pei X, Liu J, Xian Y, Lu X, J. Phys. D-Appl. Phys., 47, 145204 (2014)
  18. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G, Plasma Chem. Plasma Process., 26(4), 425 (2006)
  19. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G, Plasma Chem. Plasma Process., 27(2), 163 (2007)
  20. Babaeva NY, Kushner MJ, J. Phys. D-Appl. Phys., 43, 185206 (2010)
  21. Kim JH, Park CJ, Kim CK, Korean Chem. Eng. Res., 57(3), 432 (2019)
  22. Liang C, Qiu H, Han Y, Gu H, Song P, Wang L, Kong J, Cao D, Gu J, J. Mater. Chem. C, 7, 2725 (2019)
  23. Huangfu Y, Liang C, Han Y, Qiu H, Song P, Wang L, Kong J, Gu J, Compos. Sci. Technol., 169, 70 (2019)
  24. Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, Gu J, Compos. Pt. A-Appl. Sci. Manuf., 121, 265 (2019)
  25. Kang Y, Wang CL, Qiao YB, Gu JW, Zhang H, Peijs T, Kong J, Zhang GC, Shi XT, Biomacromolecules, 20(4), 1765 (2019)
  26. Dai X, Du Y, Yang J, Wang D, Gu J, Li Y, Wang S, Xu BB, Kong J, Compos. Sci. Technol., 174, 27 (2019)
  27. Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J, Compos. Commun., 10, 68 (2018)
  28. Liu Y, Yao M, Zhang L, Niu Z, J. Energy Chem., 38, 199 (2019)
  29. Zhao Y, Wang JJ, Ma CL, Cao LJ, Shao ZP, Chem. Eng. J., 370, 536 (2019)
  30. Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo R, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440 (2018)
  31. Goh WL, Tan KT, Tse MS, Liu KY, Int. J. Mod. Phys. B, 16, 197 (2002)
  32. O’Kelly JP, Mongey KF, Gobil Y, Torres J, Kelly PV, Crean GM, Microelectron. Eng., 50, 473 (2000)
  33. Dulal SMSI, Kim TH, Rhee H, Sung JY, Kim CK, J. Alloy. Compd., 467, 370 (2009)
  34. Kim TH, Dulal SMSI, Park CH, Chae HY, Kim CK, Surf. Coat. Technol., 202, 4861 (2008)
  35. Baroch P, Saito N, Takai O, J. Phys. D-Appl. Phys., 41, 085207 (2008)
  36. Schwabedissen A, Lacinski P, Chen X, Engemann J, Contrib. Plasma Phys., 47, 551 (2007)
  37. Fujishima T, J. Int. Council Elec. Eng., 8, 99 (2018)
  38. Bose D, Rauf S, Hash DB, Govindan TR, Meyyappan M, J. Vac. Sci. Technol. A, 22(6), 2290 (2004)
  39. Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y, Thin Solid Films, 435(1-2), 259 (2003)
  40. Ahmed MW, Rahman MS, Choi S, Shaislamov U, Yang JK, Suresh R, Lee HJ, Appl. Sci. Converg. Technol., 26, 118 (2017)
  41. Ohno N, Razzak MA, Ukai H, Takamura S, Uesugi Y, Plasma Fusion Res., 1, 028 (2006)
  42. Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu PK, J. Appl. Phys., 115, 033303 (2014)
  43. http://physics.nist.gov/PhysRefData/ASD/index.html.
  44. Camacho JJ, Poyato JML, Diaz L, Santos M, J. Phys. B: At. Mol. Phys., 40, 4573 (2007)