화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.9, 2502-2506, September, 2017
Effects of oxygen plasma generated in magnetron sputtering of ruthenium oxide on pentacene thin film transistors
E-mail:,
Effects of oxygen plasma generated in a sputtering process for deposition of electrodes on pentacene thin films to configure top-contact (TC) transistors have been thoroughly investigated. Reactive oxygen species severely degraded electrical properties of pentacene films during the deposition of RuOx electrodes, leading to a failure of devices. In the off-region, the leakage current increased by about two orders of magnitude, and the subthreshold slope also increased by 6.5 times. The top surface of pentacene films was oxidized by oxygen plasma and C-O and C=O bonds awerere created. The pentacenequinone derivative was confirmed by X-ray photoelectron spectroscopy. The oxidation of pentacene films gives rise to charge traps at the pentacene/electrode interface, which produces a leakage channel between source and drain electrodes. We believe that this side effect of oxygen plasma on the fabrication of TC-devices should be considered carefully.
  1. Kamtekar KT, Monkman AP, Bryce MR, Adv. Mater., 22(5), 572 (2010)
  2. Newman CR, Frisbie CD, da Silva Filho DA, Bredas JL, Ewbank PC, Mann KR, Chem. Mater., 146, 4436 (2004)
  3. Fortunato E, Barquinha P, Martins R, Adv. Mater., 24(22), 2945 (2012)
  4. Murphy AR, Frechet JMJ, Chem. Rev., 107(4), 1066 (2007)
  5. Rhee SW, Yun DJ, J. Mater. Chem., 18, 5437 (2008)
  6. Facchetti A, Yoon MH, Marks TJ, Adv. Mater., 17(14), 1705 (2005)
  7. Dimitrakopoulos CD, Malenfant PRL, Adv. Mater., 14(2), 99 (2002)
  8. Cosseddu P, Bonfiglio A, Thin Solid Films, 515(19), 7551 (2007)
  9. Yun DJ, Lee S, Yong K, Rhee SW, Appl. Phys. Lett., 97, 073303 (2010)
  10. Yun DJ, Rhee SW, J. Electrochem. Soc., 155(11), H899 (2008)
  11. Chu CW, Li SH, Chem CW, Shrotriya V, Yang Y, Appl. Phys. Lett., 87, 193508 (2005)
  12. Zhang XH, Domercq B, Wang X, Yoo S, Kondo T, Wang ZL, Kippelen B, Org. Electron., 8, 718 (2007)
  13. Kim DH, Kim DW, Kim KS, Kim HJ, Moon JS, Hong MP, Kim BS, Shin JH, Kim YM, Song KK, Shin SS, Jpn. J. Appl. Phys., 47, 5672 (2008)
  14. Rolland A, Richard J, Kleider JP, Mencaraglia D, J. Electrochem. Soc., 140(12), 3679 (1993)
  15. McDowell M, Hill IG, Appl. Phys. Lett., 88, 073505 (2006)
  16. Kim HK, Yu IH, Lee JH, Park TJ, Hwang CS, ACS Appl. Mater. Interfaces, 5, 1327 (2013)
  17. Park S, Kim W, Kim Y, Korean J. Chem. Eng., 34(5), 1500 (2017)
  18. So F, Kondakov D, Adv. Mater., 22(34), 3762 (2010)
  19. Park M, Park JS, Han IK, Oh JY, J. Mater. Chem., 4, 11307 (2016)
  20. Kang SJ, Yi Y, Kim CY, Yoo KH, Moewes A, Cho MH, Denlinger JD, Whang CN, Chang GS, Phys. Rev. B, 72, 205328 (2005)
  21. Parisse P, Picozzi S, Ottaviano L, Org. Elec., 8, 498
  22. Zan HW, Chou CW, Jpn. J. Appl. Phys., 48, 031501 (2009)
  23. Ono K, Totani H, Hiei T, Yoshino A, Saito K, Eguchi K, Tomura M, Nishida J, Yamashita Y, Tetrahedron, 63, 9699 (2007)
  24. Matsumoto Y, Ohsawa T, Nakajima K, Koinuma H, Meas. Sci. Technol., 16, 199 (2005)
  25. Vollmer A, Weiss H, Rentenberger S, Salzmann I, Rabe JP, Koch N, Surf. Sci., 600, 4004 (2006)