화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.12, 2474-2479, December, 2018
Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma
E-mail:
Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel (Ni(EtCp)2) and O2 plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, O2 plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of 100-325 °C and a growth rate of 0.037±0.002 nm per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.
  1. Rai P, Yoon JW, Jeong HM, Hwang SJ, Kwak CH, Lee JH, Nanoscale, 6, 822 (2014)
  2. Wang J, Wei L, Zhang L, Zhang J, Wei H, Jiang C, Zhang Y, J. Mater. Chem., 22, 20038 (2012)
  3. Betancur R, Maymo M, Elias X, Vuong LT, Martorell J, Sol. Energy Mater. Sol. Cells, 95(2), 735 (2011)
  4. Al-Ghamdi AA, Mahmoud WE, Yaghmour SJ, Al-Marzouki FM, J. Alloy. Compd., 486, 9 (2009)
  5. Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J, Yan F, Yang S, Angew. Chem.-Int. Edit., 126, 12779 (2014)
  6. Ukoba KO, Eloka-Eboka AC, Inambao FL, Renew. Sust. Energ. Rev., 82, 2900 (2018)
  7. Kim JH, Lee HM, Kang DW, Lee KM, Kim CK, Korean J. Chem. Eng., 33, 9 (2016)
  8. Barreca D, Massignan C, Chem. Mater., 13(2), 588 (2001)
  9. Yang P, Tong X, Wang G, Gao Z, Guo X, Qin Y, ACS Appl. Mater. Interfaces, 7, 4772 (2015)
  10. Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y, J. Mater. Chem. A, 3, 2734 (2015)
  11. Kim DH, Kim YJ, Song YS, Lee BT, Kim JH, Suh S, Gordon R, J. Electrochem. Soc., 150(10), C740 (2003)
  12. Yang TS, Cho WT, Kim M, An KS, Chung TM, Kim CG, Kim Y, J. Vac. Sci. Technol. A, 23(4), 1238 (2005)
  13. Lindahl E, Ottosson M, Carlsson JO, Chem. Vap. Deposition, 15, 186 (2009)
  14. Yu L, Wang G, Wan G, Wang G, Lin S, Li X, Wang K, Bai Z, Xiang Y, Dalton Trans., 45, 13779 (2016)
  15. Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y, J. Mater. Chem. A, 3, 2734 (2015)
  16. Lu HL, Scarel G, Wiemer C, Perego M, Spiga S, Fanciulli M, Pavia G, J. Electrochem. Soc., 155(10), H807 (2008)
  17. Lu HL, Scarel G, Li XL, Fanciulli M, J. Cryst. Growth, 310(24), 5464 (2008)
  18. Barr MKS, Assaud L, Wu YL, Laffon C, Parent P, Bachmann J, Santinacci L, Electrochim. Acta, 179, 504 (2015)
  19. Motamedi P, Bosnick K, Cui K, Cadien K, Hogan JD, ACS Appl. Mater. Interfaces, 9, 24722 (2017)
  20. Kim YW, Kim DH, Korean J. Chem. Eng., 29(7), 969 (2012)
  21. Hufnagel AG, Henß AK, Hoffmann R, Zeman OEO, Haringer S, Rohlfing DF, Bein T, Adv. Mater. Interfaces, 5, 170153 (2018)
  22. Malwala D, Gopinath P, Environ. Sci.: Nano, 2, 78 (2015)
  23. Ramachandran RK, Dendooven J, Detavernier C, J. Mater. Chem. A, 2, 10662 (2014)
  24. Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
  25. Chodankar NR, Ji SH, Kim DH, J. Taiwan Inst. Chem. Eng., 80, 503 (2017)
  26. Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 35(2), 567 (2018)
  27. Chen X, Pomerantseva E, Banerjee P, Gregorczyk K, Ghodssi R, Rubloff G, Chem. Mater., 24, 1255 (2012)