Journal of Industrial and Engineering Chemistry, Vol.75, 77-85, July, 2019
Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making
E-mail:
This paper presents a study of the techno-economic analysis of producing methanol (MeOH) from steel mill off-gases, especially coke oven gas and basic oxygen furnace gas. The mixed off-gases produce syngas with appropriate H2/CO ratio and are converted to MeOH. A detailed kinetic model over a commercial catalyst Cu/ZnO/Al2O3 is applied for MeOH synthesis reaction. Four process designs were analyzed; they are combinations of two syngas compositions and the presence or absence of an interim MeOHseparation unit. When production rate was 22.2-28.3 t MeOH h-1, the unreacted purged gas could be used to generate electricity or can be sold as a fuel. The energy efficiency was in the range of 54.6-55.9%, considering both MeOH and electricity as an energy output. A heat-exchanger network is designed to minimize energy usage in the process. We analyzed the proposed process techno-economically and calculated a minimum selling price. The best case gives $0.57 kg-1 which is slightly higher than the recent market price, although a sensitivity analysis suggests that the price can be decreased in some cases. This study can be a basis for further research on this process.
Keywords:Methanol production;Steel-work off-gases;Kinetic model;Techno-economic analysis;Coke oven gas;Basic oxygen furnace gas
- Wall D, Kepplinger W, Millner R, Steel Res. Int., 82(8), 926 (2011)
- Xiang D, Xiang JJ, Sun Z, Cao Y, Energy, 140, 78 (2017)
- Lundgren J, Ekbom T, Hulteberg C, Larsson M, Grip CE, Nilsson L, Tuna P, Appl. Energy, 112, 431 (2013)
- Qin ZF, Ren J, Miao MQ, Li Z, Lin JY, Xie KC, Appl. Catal. B: Environ., 164, 18 (2015)
- Yi Q, Gong MH, Huang Y, Feng J, Hao YH, Zhang JL, Li WY, Energy, 112, 618 (2016)
- Uribe-Soto W, Portha JF, Commenge JM, Falk L, Renew. Sust. Energ. Rev., 74, 809 (2017)
- Riaz A, Zahedi G, Klemes JJ, J. Clean Prod., 57, 19 (2013)
- Bermudez JM, Ferrera-Lorenzo N, Luque S, Arenillas A, Menendez JA, Fuel Process. Technol., 115, 215 (2013)
- Bermudez JM, Fidalgo B, Arenillas A, Menendez JA, Fuel, 89(10), 2897 (2010)
- Bermudez JM, Fidalgo B, Arenillas A, Menendez JA, Fuel, 94(1), 197 (2012)
- Saeidi S, Fazlollahi F, Najari S, Iranshahi D, Klemes JJ, Baxter LL, J. Ind. Eng. Chem., 49, 1 (2017)
- Gong MH, Yi Q, Huang Y, Wu GS, Hao YH, Feng J, Li WY, Energy Conv. Manag., 133, 318 (2017)
- Zhou L, Hu SY, Li YR, Zhou QH, Chem. Eng. J., 136(1), 31 (2008)
- Man Y, Yang SY, Zhang J, Qian Y, Appl. Energy, 133, 197 (2014)
- Qian Y, Man Y, Peng LJ, Zhou HR, Ind. Eng. Chem. Res., 54(9), 2519 (2015)
- Song CS, Wei P, Catal. Today, 98(4), 463 (2004)
- Xiang D, Jin T, Lei XR, Liu S, Jiang Y, Dong ZB, Tao QB, Cao Y, Appl. Energy, 212, 944 (2018)
- Ishioka M, Okada T, Matsubara K, Carbon, 30(7), 975 (1992)
- Integrated low pressure methanol process; Technical report, Gas Chemie BmbH: Frankfurt am Main, Germany.
- Koh MK, Wong YJ, Chai SP, Mohamed AR, J. Ind. Eng. Chem., 62, 156 (2018)
- Ren H, Xu CH, Zhao HY, Wang YX, Liu J, Liu JY, J. Ind. Eng. Chem., 28, 261 (2015)
- Bae JW, Kang SH, Lee YJ, Jun KW, J. Ind. Eng. Chem., 15(4), 566 (2009)
- Kordabadi H, Jahanmiri A, Chem. Eng. J., 108(3), 249 (2005)
- Kordabadi H, Jahanmiri A, Chem. Eng. Process. Process Intensif., 46(12), 1299 (2007)
- Rahimpour MR, Fuel Process. Technol., 89(5), 556 (2008)
- Rahimpour MR, Lotfinejad M, Chem. Eng. Technol., 31(1), 38 (2008)
- Chen L, Jiang QZ, Song ZZ, Posarac D, Chem. Eng. Technol., 34(5), 817 (2011)
- Natta G, Emmett PH, Reinhold, Catalysis, 2, 349 (1955)
- Bakemeier H, Laurer PR, Schroder W, Chem. Eng. Prog., 66, 98 (1970)
- Leonov VE, Karavaev MM, Tsybina EN, Petrishcheva GS, Kinet. Catal., 14, 970 (1973)
- Villa P, Forzatti P, Buzzi-Ferrarls, Garone G, Pasquon I, Ind. Eng. Chem. Process Des. Dev., 24, 12 (1985)
- Seyfert W, Luft G, Chem. Ing. Tech., 57, 382 (1985)
- Chinchen GC, Denny PJ, Parker DG, Short GD, Spenser MS, Waugh KC, Whan DA, Am. Chem. Soc. Div. Fuel Chem., 29, 178 (1984)
- Kuznetsov VD, Shub FS, Temkin MI, Kinet. Catal., 25, 606 (1984)
- Tagawa T, Amenomiya Y, Proc. 8th Int. Congr. Catal., 2, 557 (1984)
- Dybkjaer I, Pap. Present. NATO Conf. Chem. React. Des. Technol. Can., (1985).
- Tagawa T, Amenomiya Y, Appl. Catal., 18, 285 (1985)
- Malinovskaya OA, Rozovskii AY, Zolotarskii IA, Lender YV, Matros YS, Lin GI, Dubovich GV, Popova NA, Savostina NV, Catal. Lett., 34(1), 87 (1987)
- Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA, Appl. Catal., 30(2), 333 (1987)
- Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
- Graaf GH, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 43(12), 3185 (1988)
- Nerlov J, Sckerl S, Wambach J, Chorkendorff I, Appl. Catal. A: Gen., 191(1-2), 97 (2000)
- Biedermann P, Grube T, Hohlein B, Methanol as an Energy Carrier, Forschungszentrum Julich GmbH, Julich, Germany, 2006.
- Raudaskoski R, Turpeinen E, Lenkkeri R, Pongracz E, Keiski RL, Catal. Today, 144(3), 318 (2009)
- Grabow LC, Mavrikakis M, ACS Catal., 1(4), 365 (2011)
- Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 45(4), 773 (1990)
- Ovesen CV, Clausen BS, Schiotz J, Stoltze P, Topsoe H, Noskov JK, J. Catal., 168(2), 133 (1997)
- Bayat M, Dehghani Z, Rahimpour MR, J. Ind. Eng. Chem., 20(5), 3256 (2014)
- Rahimpour MR, Mazinani S, Vaferi B, Baktash MS, Appl. Energy, 88(1), 41 (2011)
- Olah GA, Angew. Chem.-Int. Edit., 44(18), 2636 (2005)
- Yin XL, Leung DYC, Chang J, Wang JF, Fu Y, Wu CZ, Energy Fuels, 19(1), 305 (2005)
- EIA -Electricity Data. Available at: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_03. (Accessed 10 January 2018).
- Couper JR, Penney WR, PhD JRF, Chemical Process Equipment - Selection and Design (Revised 2nd Edition), Gulf Professional Publishing, 2009.
- Ng KS, Sadhukhan J, Biomass Bioenergy, 35(3), 1153 (2011)
- Modesto M, Nebra SA, Appl. Therm. Eng., 29(11-12), 2127 (2009)
- T.UV. SUD, Ind. Serv. (2008).
- Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5(9), 8417 (2012)
- Humbird D, Davis R, Tao L, Kinchin C, Natl. Renew. Energy Lab. (2011).
- Seider WD, Seader JD, Lwein DR, Widagdo S, Product and Process Design Principles: Synthesis, Analysis, and Evaluation, 2nd ed., (2004).
- Cu/ZnO/Al2O3 price. https://www.alibaba.com/product-detail/Hot-sale-meth-anol-synthesis-catalystCu_60687317521.html?spm=a2700.7724857.normal-List.5.19091919Fv3SIg. (Accessed 10 October 2018).
- Techno-economic and environmental evaluation of CO2 utilisation for fuel production (Accessed 12 October 2018).
- Byun J, Han J, Green Chem., 19(21), 5214 (2017)