화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.75, 77-85, July, 2019
Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making
E-mail:
This paper presents a study of the techno-economic analysis of producing methanol (MeOH) from steel mill off-gases, especially coke oven gas and basic oxygen furnace gas. The mixed off-gases produce syngas with appropriate H2/CO ratio and are converted to MeOH. A detailed kinetic model over a commercial catalyst Cu/ZnO/Al2O3 is applied for MeOH synthesis reaction. Four process designs were analyzed; they are combinations of two syngas compositions and the presence or absence of an interim MeOHseparation unit. When production rate was 22.2-28.3 t MeOH h-1, the unreacted purged gas could be used to generate electricity or can be sold as a fuel. The energy efficiency was in the range of 54.6-55.9%, considering both MeOH and electricity as an energy output. A heat-exchanger network is designed to minimize energy usage in the process. We analyzed the proposed process techno-economically and calculated a minimum selling price. The best case gives $0.57 kg-1 which is slightly higher than the recent market price, although a sensitivity analysis suggests that the price can be decreased in some cases. This study can be a basis for further research on this process.
  1. Wall D, Kepplinger W, Millner R, Steel Res. Int., 82(8), 926 (2011)
  2. Xiang D, Xiang JJ, Sun Z, Cao Y, Energy, 140, 78 (2017)
  3. Lundgren J, Ekbom T, Hulteberg C, Larsson M, Grip CE, Nilsson L, Tuna P, Appl. Energy, 112, 431 (2013)
  4. Qin ZF, Ren J, Miao MQ, Li Z, Lin JY, Xie KC, Appl. Catal. B: Environ., 164, 18 (2015)
  5. Yi Q, Gong MH, Huang Y, Feng J, Hao YH, Zhang JL, Li WY, Energy, 112, 618 (2016)
  6. Uribe-Soto W, Portha JF, Commenge JM, Falk L, Renew. Sust. Energ. Rev., 74, 809 (2017)
  7. Riaz A, Zahedi G, Klemes JJ, J. Clean Prod., 57, 19 (2013)
  8. Bermudez JM, Ferrera-Lorenzo N, Luque S, Arenillas A, Menendez JA, Fuel Process. Technol., 115, 215 (2013)
  9. Bermudez JM, Fidalgo B, Arenillas A, Menendez JA, Fuel, 89(10), 2897 (2010)
  10. Bermudez JM, Fidalgo B, Arenillas A, Menendez JA, Fuel, 94(1), 197 (2012)
  11. Saeidi S, Fazlollahi F, Najari S, Iranshahi D, Klemes JJ, Baxter LL, J. Ind. Eng. Chem., 49, 1 (2017)
  12. Gong MH, Yi Q, Huang Y, Wu GS, Hao YH, Feng J, Li WY, Energy Conv. Manag., 133, 318 (2017)
  13. Zhou L, Hu SY, Li YR, Zhou QH, Chem. Eng. J., 136(1), 31 (2008)
  14. Man Y, Yang SY, Zhang J, Qian Y, Appl. Energy, 133, 197 (2014)
  15. Qian Y, Man Y, Peng LJ, Zhou HR, Ind. Eng. Chem. Res., 54(9), 2519 (2015)
  16. Song CS, Wei P, Catal. Today, 98(4), 463 (2004)
  17. Xiang D, Jin T, Lei XR, Liu S, Jiang Y, Dong ZB, Tao QB, Cao Y, Appl. Energy, 212, 944 (2018)
  18. Ishioka M, Okada T, Matsubara K, Carbon, 30(7), 975 (1992)
  19. Integrated low pressure methanol process; Technical report, Gas Chemie BmbH: Frankfurt am Main, Germany.
  20. Koh MK, Wong YJ, Chai SP, Mohamed AR, J. Ind. Eng. Chem., 62, 156 (2018)
  21. Ren H, Xu CH, Zhao HY, Wang YX, Liu J, Liu JY, J. Ind. Eng. Chem., 28, 261 (2015)
  22. Bae JW, Kang SH, Lee YJ, Jun KW, J. Ind. Eng. Chem., 15(4), 566 (2009)
  23. Kordabadi H, Jahanmiri A, Chem. Eng. J., 108(3), 249 (2005)
  24. Kordabadi H, Jahanmiri A, Chem. Eng. Process. Process Intensif., 46(12), 1299 (2007)
  25. Rahimpour MR, Fuel Process. Technol., 89(5), 556 (2008)
  26. Rahimpour MR, Lotfinejad M, Chem. Eng. Technol., 31(1), 38 (2008)
  27. Chen L, Jiang QZ, Song ZZ, Posarac D, Chem. Eng. Technol., 34(5), 817 (2011)
  28. Natta G, Emmett PH, Reinhold, Catalysis, 2, 349 (1955)
  29. Bakemeier H, Laurer PR, Schroder W, Chem. Eng. Prog., 66, 98 (1970)
  30. Leonov VE, Karavaev MM, Tsybina EN, Petrishcheva GS, Kinet. Catal., 14, 970 (1973)
  31. Villa P, Forzatti P, Buzzi-Ferrarls, Garone G, Pasquon I, Ind. Eng. Chem. Process Des. Dev., 24, 12 (1985)
  32. Seyfert W, Luft G, Chem. Ing. Tech., 57, 382 (1985)
  33. Chinchen GC, Denny PJ, Parker DG, Short GD, Spenser MS, Waugh KC, Whan DA, Am. Chem. Soc. Div. Fuel Chem., 29, 178 (1984)
  34. Kuznetsov VD, Shub FS, Temkin MI, Kinet. Catal., 25, 606 (1984)
  35. Tagawa T, Amenomiya Y, Proc. 8th Int. Congr. Catal., 2, 557 (1984)
  36. Dybkjaer I, Pap. Present. NATO Conf. Chem. React. Des. Technol. Can., (1985).
  37. Tagawa T, Amenomiya Y, Appl. Catal., 18, 285 (1985)
  38. Malinovskaya OA, Rozovskii AY, Zolotarskii IA, Lender YV, Matros YS, Lin GI, Dubovich GV, Popova NA, Savostina NV, Catal. Lett., 34(1), 87 (1987)
  39. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA, Appl. Catal., 30(2), 333 (1987)
  40. Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
  41. Graaf GH, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 43(12), 3185 (1988)
  42. Nerlov J, Sckerl S, Wambach J, Chorkendorff I, Appl. Catal. A: Gen., 191(1-2), 97 (2000)
  43. Biedermann P, Grube T, Hohlein B, Methanol as an Energy Carrier, Forschungszentrum Julich GmbH, Julich, Germany, 2006.
  44. Raudaskoski R, Turpeinen E, Lenkkeri R, Pongracz E, Keiski RL, Catal. Today, 144(3), 318 (2009)
  45. Grabow LC, Mavrikakis M, ACS Catal., 1(4), 365 (2011)
  46. Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 45(4), 773 (1990)
  47. Ovesen CV, Clausen BS, Schiotz J, Stoltze P, Topsoe H, Noskov JK, J. Catal., 168(2), 133 (1997)
  48. Bayat M, Dehghani Z, Rahimpour MR, J. Ind. Eng. Chem., 20(5), 3256 (2014)
  49. Rahimpour MR, Mazinani S, Vaferi B, Baktash MS, Appl. Energy, 88(1), 41 (2011)
  50. Olah GA, Angew. Chem.-Int. Edit., 44(18), 2636 (2005)
  51. Yin XL, Leung DYC, Chang J, Wang JF, Fu Y, Wu CZ, Energy Fuels, 19(1), 305 (2005)
  52. EIA -Electricity Data. Available at: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_03. (Accessed 10 January 2018).
  53. Couper JR, Penney WR, PhD JRF, Chemical Process Equipment - Selection and Design (Revised 2nd Edition), Gulf Professional Publishing, 2009.
  54. Ng KS, Sadhukhan J, Biomass Bioenergy, 35(3), 1153 (2011)
  55. Modesto M, Nebra SA, Appl. Therm. Eng., 29(11-12), 2127 (2009)
  56. T.UV. SUD, Ind. Serv. (2008).
  57. Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5(9), 8417 (2012)
  58. Humbird D, Davis R, Tao L, Kinchin C, Natl. Renew. Energy Lab. (2011).
  59. Seider WD, Seader JD, Lwein DR, Widagdo S, Product and Process Design Principles: Synthesis, Analysis, and Evaluation, 2nd ed., (2004).
  60. Cu/ZnO/Al2O3 price. https://www.alibaba.com/product-detail/Hot-sale-meth-anol-synthesis-catalystCu_60687317521.html?spm=a2700.7724857.normal-List.5.19091919Fv3SIg. (Accessed 10 October 2018).
  61. Techno-economic and environmental evaluation of CO2 utilisation for fuel production (Accessed 12 October 2018).
  62. Byun J, Han J, Green Chem., 19(21), 5214 (2017)