화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.62, 156-165, June, 2018
Carbon dioxide hydrogenation to methanol over multi-functional catalyst: Effects of reactants adsorption and metal-oxide(s) interfacial area
E-mail:
Copper-based catalysts with different metal-oxide(s) composition were synthesized and applied in CO2 hydrogenation to methanol. The metal component(s) (Cu, Zn and/or Mn) were dispersed on high surface area SBA-15. Correlations between the adsorption properties of catalysts and the catalytic performances reveal that a catalyst with both strong hydrogenation strength and moderate CO2 adsorption strength is crucial for achieving high CO2 conversion. Additionally, the availability of metal-oxide(s) interfacial area greatly enhances methanol selectivity. An adequate balance between H2 and CO2 adsorptions as well as metal-oxide(s) interfacial area were responsible for the high catalytic activity achieved in this study.
  1. Aresta M, Dibenedetto A, Angelini A, J. CO2 Util., 3-4, 65 (2013)
  2. Huang CH, Tan CS, Aerosol Air Qual. Res., 14, 480 (2014)
  3. Olah GA, Goeppert A, Prakash GKS, Beyond Oil and Gas: The Methanol Economy, Wiley-VCH, Weinheim, 2006.
  4. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB, Chem. Eng. Res. Des., 92(11), 2557 (2014)
  5. Porosoff MD, Yan B, Chen JG, Energy Environ. Sci., 9, 62 (2016)
  6. Li Y, Chan SH, Sun Q, Nanoscale, 7, 8663 (2015)
  7. Ali KA, Zuhairi A, Mohamed AR, Renew. Sust. Energ. Rev., 44, 508 (2015)
  8. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang XX, Silva R, Zou XX, Zboril R, Varma RS, Chem. Rev., 116(6), 3722 (2016)
  9. Ren H, Xu C, Zhao H, Wang Y, Liu J, Liu J, Ind. Eng. Chem., 28, 261 (2015)
  10. Witoon T, Kachaban N, Donphai W, Kidkhunthod P, Faungnawakij K, Chareonpanich M, Limtrakul J, Energy Conv. Manag., 118, 21 (2016)
  11. Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J, Chem. Eng. J., 316, 692 (2017)
  12. Chang K, Wang TF, Chen JGG, Appl. Catal. B: Environ., 206, 704 (2017)
  13. Park JB, Graciani J, Evans J, Stacchiola D, Shuguo M, Ping L, Nambu A, Sanz JF, Hrbek J, Rodriguez JA, Proc. Natl. Acad. Sci., 106, 4975 (2009)
  14. Yang Y, White MG, Liu P, J. Phys. Chem. C, 116, 248 (2012)
  15. Chen GX, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng YP, Weng XF, Chen MS, Zhang P, Pao CW, Lee JF, Zheng NF, Science, 344(6183), 495 (2014)
  16. Rodriguez JA, Ping L, Stacchiola DJ, Senanayake SD, Michael WG, Jingguang CG, ACS Catal., 5, 6696 (2015)
  17. Okumura M, Akita T, Haruta M, Wang X, Kajikawa O, Okada O, Appl. Catal. B: Environ., 41(1-2), 43 (2003)
  18. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA, Science, 345(6196), 546 (2014)
  19. Saito M, Fujitani T, Takeuchi M, Watanabe T, Appl. Catal. A: Gen., 138(2), 311 (1996)
  20. Toyir J, de la Piscina PR, Fierro JLG, Homs N, Appl. Catal. B: Environ., 34(4), 255 (2001)
  21. Saito M, Takeuchi M, Fujitani T, Toyir J, Luo S, Wu J, Mabuse H, Ushikoshi K, Mori K, Watanabe T, Appl. Organomet. Chem., 14, 763 (2000)
  22. Toyir J, Miloua R, Elkadri NE, Nawdali M, Toufik H, Miloua F, Saito M, Phys. Procedia, 2, 1075 (2009)
  23. Sloczynski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J, Appl. Catal. A: Gen., 310, 127 (2006)
  24. Maria M, Aleksandra K, Henryk M, Andrzej IL, Hildegarda W, CHEMIK, 68(1), 61 (2014)
  25. Sloczynski J, Grabowski R, Kozlowska A, Olszewski P, Lachowska M, Skrzypek J, Stoch J, Appl. Catal. A: Gen., 249(1), 129 (2003)
  26. Sloczynski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J, Appl. Catal. A: Gen., 310, 127 (2006)
  27. Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlogl R, Science, 336(6083), 893 (2012)
  28. Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P, J. CO2 Util., 16, 104 (2016)
  29. Calderon-Magdaleno MA, Mendoza-Nieto JA, Klimova TE, Catal. Today, 220-222, 78 (2014)
  30. van Dillen AJ, Terorde RJAM, Lensveld DJ, Geus JW, de Jong KP, J. Catal., 216(1-2), 257 (2003)
  31. Guo XY, Yin AY, Dai WL, Fan KN, Catal. Lett., 132(1-2), 22 (2009)
  32. Wang S, Guo W, Wang H, Zhu L, Yin S, Qiu K, New J. Chem., 38, 2792 (2014)
  33. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C, ACS Catal., 2, 1667 (2012)
  34. Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F, Appl. Catal. B: Environ., 152-153, 152 (2014)
  35. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA, J. Phys. Chem. B, 109(6), 2192 (2005)
  36. Xiao S, Zhang YF, Gao P, Zhong LS, Li XP, Zhang ZZ, Wang H, Wei W, Sun YH, Catal. Today, 281, 327 (2017)
  37. Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C, Chem. Mater., 20, 5090 (2008)
  38. Jiang X, Koizumi N, Guo X, Song C, Appl. Catal. B: Environ., 170-171, 173 (2015)
  39. Kilo M, Weigel J, Wokaun A, Koeppel RA, Stoeckli A, Baiker A, J. Mol. Catal. A-Chem., 126, 169 (1997)
  40. Zhao H, Fang K, Dong F, Lin M, Sun Y, Tang Z, J. Ind. Eng. Chem., 54, 117 (2017)
  41. Wollner A, Lange F, Schmelz H, Knozinger H, Appl. Catal. A: Gen., 94, 181 (1993)
  42. Alexander VN, Anna K, Stephen WG, Cedric JP, NIST Standard Reference Database 20, Version 4.1, (2012) Available at: https://srdata.nist.gov/xps/XPSDetailPage.aspx?AllDataNo=69909#General.htm., (Accessed 01.11.17).
  43. Zhou XH, Su TM, Jiang YX, Qin ZZ, Ji HB, Guo ZH, Chem. Eng. Sci., 153, 10 (2016)
  44. Yoo CJ, Lee DW, Kim MS, Moon DJ, Lee KY, J. Mol. Catal. A-Chem., 378, 255 (2013)
  45. Cai WJ, de la Piscina PR, Toyir J, Homs N, Catal. Today, 242, 193 (2015)
  46. Samei E, Taghizadeh M, Bahmani M, Fuel Process. Technol., 96, 128 (2012)
  47. Zhang L, Zhang Y, Chen S, Appl. Catal. A: Gen., 415-416, 118 (2012)
  48. Kang SH, Bae JW, Sai Prasad PS, Oh JH, Jun KW, Song SL, Min KS, J. Ind. Eng. Chem., 15(5), 665 (2009)
  49. Prieto G, Martinez A, Murciano R, Arribas MA, Appl. Catal. A: Gen., 367(1-2), 146 (2009)
  50. Thomas JM, Thomas MJ, Principles and Practice of Heterogeneous Catalysis, Second ed., Wiley-VCH, Weinheim, 1997.
  51. Xiang X, Pan F, Li Y, Adv. Compos. Hybrid Mater. (2017), doi:http://dx.doi.org/10.1007/s42114-017-0001-6.
  52. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS, J. Mol. Catal. A-Chem., 345(1-2), 60 (2011)
  53. Gao P, Li F, Zhao N, Xiao FK, Wei W, Zhong LS, Sun YH, Appl. Catal. A: Gen., 468, 442 (2013)
  54. Qin ZZ, Su TM, Ji HB, Jiang YX, Liu RW, Chen JH, AIChE J., 61(5), 1613 (2015)
  55. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F, Appl. Catal. A: Gen., 350(1), 16 (2008)
  56. Huang C, Chen S, Fei X, Liu D, Zhang Y, Catalysts, 5, 1846 (2015)
  57. Xiao J, Mao D, Guo X, Yu J, Energy Technol., 3, 32 (2015)
  58. Funk S, Hokkanen B, Wang J, Burghaus U, Bozzolo G, Garces JE, J. Chem. Phys., 600, 583 (2006)
  59. Burghaus U, in: Suib SL (Ed.), New and Future Developments in Catalysis:Activation of Carbon Dioxide, Elsevier, p27 2013.
  60. Liu Y, Sun K, Ma H, Xu X, Wang X, Catal. Commun., 11, 880 (2010)
  61. Wu GD, Wang XL, Wei W, Sun YH, Appl. Catal. A: Gen., 377(1-2), 107 (2010)
  62. Liang XL, Dong X, Lin GD, Zhang HB, Appl. Catal. B: Environ., 88(3-4), 315 (2009)
  63. Gao P, Li F, Zhan HJ, Zhao N, Xiao FK, Wei W, Zhong LS, Wang H, Sun YH, J. Catal., 298, 51 (2013)
  64. Liu C, Cundari TR, Wilson AK, J. Phys. Chem. C, 116, 5681 (2012)
  65. Ou L, Long W, Huang J, Chen Y, Jin J, RSC Adv., 7, 11938 (2017)
  66. Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ, Angew. Chem.-Int. Edit., 52, 5101 (2013)