화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 445-451, March, 2019
Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder
E-mail:
Garnet-related Li6.25Al0.25La3Zr2O12 (Al-LLZO) powder was prepared by calcination the precursor synthesized a Couette.Taylor reactor. The powder comprised regular blocks (1-2 mm) and consisted of fine particles (average particle size: D50 = 600 nm, specific surface area: 2.42 m2 g-1) that adopted a highly crystalline nanoscale cubic structure (lattice parameter: a = 13.07769 Å; crystallite size: 41.4 nm). A composite electrolyte (CE) sheet in which the Al-LLZO nanopowder was finely dispersed was prepared by casting a slurry comprising 70 wt% Al-LLZO, polyethylene oxide (PEO), and lithium salt (LiClO4). The total ionic conductivity of the CE sheet was 7.59 x 10-6 S cm-1 at 25 °C and 1.93 x 10-3 S cm-1 at 70 °C, compared with 3.03 x 10-4 S cm-1 at 25 °C for the Al-LLZO pellet. Cyclic voltammetry showed that the electrochemical potential of the CE sheet was superior to that of PEO sheet. For application of the CE in all-solid lithium batteries (ASLBs), a composite NCM-based cathode composed of Al LLZO, PEO, Super-P, and VGCF was also prepared. The discharge capacity of the cell was ~122 mAh g-1 at 0.1C & 70 °C in voltages of 3.0-4.1 V, and 80% of the initial capacity was maintained over 100 cycles with high rate characteristics.
  1. Schnell J, Gunther T, Knoche T, Vieider C, Kohler L, Just A, Keller M, Passerini S, Reinhart G, J. Power Sources, 382, 160 (2018)
  2. Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen ZB, J. Electrochem. Soc., 164(7), A1731 (2017)
  3. Liu Q, Geng Z, Han CP, Fu YZ, Li S, He YB, Kang FY, Li BH, J. Power Sources, 389, 120 (2018)
  4. Ohtomo T, Hayashi A, Tatsumisago M, Tsuchida Y, Hama S, Kawamoto K, J. Power Sources, 233, 231 (2013)
  5. Ohta S, Kobayashi T, Seki J, Asaoka T, J. Power Sources, 202, 332 (2012)
  6. Jung YC, Kim SK, Kim MS, Lee JH, Han MS, Kim DH, Shin WC, Ue M, Kim DW, J. Power Sources, 293, 675 (2015)
  7. Ito S, Fujiki S, Yamada T, Aihara Y, Park Y, Kim TY, Baek SW, Lee JM, Doo S, Machida N, J. Power Sources, 248, 943 (2014)
  8. Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T, J. Power Sources, 238, 53 (2013)
  9. Nam YJ, Cho SJ, Oh DY, Lim JM, Kim SY, Song JH, Lee YG, Lee SY, Jung YS, Nano Lett., 15, 3317 (2015)
  10. Jin Y, McGinn P, J. Power Sources, 196(20), 8683 (2011)
  11. El-Shinawi H, Paterson GW, MacLaren DA, Cussen EJ, Corr SA, J. Mater. Chem., 5, 319 (2017)
  12. Li YQ, Wang Z, Li CL, Cao Y, Guo XX, J. Power Sources, 248, 642 (2014)
  13. Kim S, Hirayama M, Taminato S, Kanno R, Dalton Trans., 42, 13112 (2013)
  14. Ahn CW, Choi JJ, Ryu J, Hahn BD, Kim JW, Yoon WH, Choi JH, Park DS, J. Electrochem. Soc., 162, A60 (2014)
  15. Thangadurai V, Pinzaru D, Narayanan S, Baral AK, J. Phys. Chem. Lett., 6, 292 (2015)
  16. Choi JH, Lee CH, Yu JH, Doh CH, Lee SM, J. Power Sources, 274, 458 (2015)
  17. Chan CK, Yang T, Weller JM, Electrochim. Acta, 253, 268 (2017)
  18. Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J, J. Power Sources, 208, 193 (2012)
  19. Ohta S, Seki J, Yagi Y, Kihira Y, Tani T, Asaoka T, J. Power Sources, 265, 40 (2014)
  20. Kokal I, Ramanujachary KV, Notten PHL, Hintzen HT, Mater. Res. Bull., 47(8), 1932 (2012)
  21. Thai DK, Mayra QP, Kim WS, Powder Technol., 274, 5 (2015)
  22. Yang T, Zheng J, Cheng Q, Hu YY, Ch CK, ACS Appl. Mater. Interfaces, 9, 21773 (2017)
  23. Zhang D, Zhang L, Yang K, Wang H, Yu C, Xu D, Xu B, Wang LM, ACS Appl. Mater. Interfaces, 9, 36886 (2017)
  24. Zhang W, Nie J, Li F, Wang ZL, Sun C, Nano Energy, 45, 413 (2018)
  25. Huo HY, Sun JY, Chen C, Meng XL, He MH, Zhao N, Guo XX, J. Power Sources, 383, 150 (2018)
  26. Liu Y, Lin D, Jin Y, Liu K, Tao X, Zhang Q, Zhang X, Cui Y, Sci. Adv., 3, 1 (2017)
  27. Yan X, Li Z, Wen Z, Han WQ, J. Phys. Chem. C, 121, 1431 (2017)
  28. Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H, Nano Energy, 28, 447 (2016)
  29. Cheng SHS, He KQ, Liu Y, Zha JW, Kamruzzaman M, Ma RLW, Dang ZM, Li RKY, Chung CY, Electrochim. Acta, 253, 430 (2017)
  30. Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB, Nano Energy, 46, 176 (2018)
  31. Zhang YH, Chen F, Yang DJ, Zha WP, Li JY, Shen Q, Zhang XL, Zhang LM, J. Electrochem. Soc., 164(7), A1695 (2017)
  32. Yang SH, Kim MY, Kim DH, Jung HY, Ryu HM, Han JH, Lee MS, Kim HS, J. Ind. Eng. Chem., 56, 422 (2017)
  33. Xi J, Qiu X, Zhu W, Tang X, Microporous Mesoporous Mater., 88, 1 (2006)
  34. Cheng L, Park JS, Hou H, Zorba V, Chen G, Richardson T, Cabana J, Russo R, Doeff M, J. Mater. Chem. A, 2, 172 (2014)
  35. Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C, Joule, 2, 497 (2018)
  36. Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL, Mater. Chem. Phys., 134(2-3), 571 (2012)
  37. Zhou WD, Wang SF, Li YT, Xin S, Manthiram A, Goodenough JB, J. Am. Chem. Soc., 138(30), 9385 (2016)
  38. Chen S, Zhao Y, Yang J, Yao L, Xu X, Ionics, 23, 2603 (2017)
  39. Murugan R, Thangadurai V, Weppner W, Angew. Chem.-Int. Edit., 46(41), 7778 (2007)